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Abstract

This paper documents the economic relevance of measuring cognitive uncertainty: peo-
ple’s subjective uncertainty over their ex-ante utility-maximizing decision. In a series
of experiments on choice under risk, the formation of beliefs and forecasts of eco-
nomic variables, we show that cognitive uncertainty predicts various systematic biases
in economic decisions. When people are cognitively uncertain – either endogenously
or because the problem is designed to be complex – their decisions are heavily atten-
uated functions of objective probabilities, which gives rise to average behavior that is
regressive to an intermediate option. This insight ties together a wide range of empirical
regularities in behavioral economics that are typically viewed as distinct phenomena or
even as reflecting preferences, including the probability weighting function in choice
under risk; base rate insensitivity, conservatism and sample size effects in belief updat-
ing; and predictable overoptimism and -pessimism in forecasts of economic variables.
Our results offer a blueprint for how a simple measurement of cognitive uncertainty
generates novel insights about what people find complex and how they respond to it.
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1 Introduction

This paper studies the economic relevance of cognitive uncertainty: people’s subjective un-
certainty over which decision maximizes their expected utility. In the standard economic
model, people take decisions that they know may turn out to be ex-post suboptimal, but
they never exhibit doubts about their ex-ante optimality. Similarly, in a large majority of be-
havioral economics models, people may make systematic mistakes, but they are not nervous
that they may be committing errors. Yet, both introspection and a growing body of psycho-
logical evidence discussed below suggest that people often exhibit low confidence in their
decisions. However, it is not immediately obvious why the insight that people have some
meta-cognitive awareness of their own decision errors should be relevant to the interests of
economists in formally modeling and predicting behavior.

This paper proposes that measuring cognitive uncertainty can be productively deployed
to predict systematic biases in economic behaviors and to help tie together widely-studied
behavioral economics anomalies that are typically viewed as distinct phenomena. The main
idea consists of two components. (i) Classical anomalies share a common origin, which
is that the inherent complexity of economic decisions induces people to make noisy or
heuristic decisions instead of solving a problem precisely. These simpler decision modes
produce behaviors that are severely attenuated functions of objective problem parameters
and are regressive to an intermediate option. (ii) Cognitive uncertainty represents an easily-
measurable proxy for the unobserved noisiness or heuristic nature of people’s decision
modes, and can thus be used to predict and explain behavior.

We present experiments on decision-making under uncertainty: the ways people reason
about probabilities in the valuation of risky lotteries, inference from data, and prediction
of future events. As Figure 1 illustrates using our own experimental data, these three lit-
eratures have established striking similarities about how objective probabilities map into
people’s decisions. First, the left-hand panel depicts the well-known probability weighting
function in choice under risk that goes back to Tversky and Kahneman (1992). It illustrates
how experimental subjects implicitly treat objective probabilities in choosing between dif-
ferent monetary gambles. Second, the middle panel illustrates the canonical compressed
relationship between participants’ posterior beliefs and the Bayesian posterior in experimen-
tal belief updating tasks, which shows that people generally overestimate the probability
of unlikely events and underestimate the probability of likely ones. Finally, the right-hand
panel shows the compressed relationship between respondents’ probabilistic estimates and
“true” probabilities that has been documented in a wide range of subjective expectations
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Figure 1: Decisions as functions of objective probabilities. The left-hand panel illustrates a probability weight-
ing function in choices between monetary gambles. The middle panel illustrates the relationship between
stated beliefs and Bayesian posteriors inbelief updating experiments. The right-hand panel illustrates the
typical relationship between stated subjective probabilities and objective (historical) probabilities in surveys
about stock returns or inflation. All functions are estimated from the data discussed in Appendix E.

surveys about, for example, stock market returns or inflation rates. The characteristic fea-
ture of these three functions is that people’s decisions implicitly treat different probabilities
to some degree alike, which generates a compression effect to an “intermediate” value.

One view in the literature – reflected in the existence of a large number of dedicatedmod-
els of probability weighting and belief updating – is that these phenomena reflect domain-
specific biases or even preferences. Another view is that they have a common origin: in
response to the inherent complexity of forming beliefs and choosing between lotteries, peo-
ple may deploy simpler, noisy or heuristic decision modes. For example, in recent Bayesian
cognitive noise models of choice under risk, the difficulty of translating objective probabili-
ties into decisions introduces cognitive noise, which induces the decision-maker to partially
regress to (or anchor on) an intermediate cognitive default, thus producing probability
weighting through a mechanism akin to the classical anchoring-and-adjustment heuristic.
Similarly, systematic compression to an intermediate value can result if people choose ran-
domly with some probability. Regardless of what exactly the underlying decision mode is,
this class of models highlights that random noise often generates systematic bias. At the
same time, there is little evidence that directly ties together and explains behavior across
the three decision domains in Figure 1 as a function of noisy cognition and complexity.

To make progress, we measure cognitive uncertainty as a proxy for the inherent nois-
iness or heuristic nature of people’s decisions. We conduct a series of online experiments
with a total of more than 3,000 participants. We elicit entirely standard controlled deci-
sions in each of the three domains discussed above. In addition to eliciting payoff-relevant
choices and beliefs, we also measure cognitive uncertainty. For example, in lottery valua-
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tion tasks, after we elicit a participant’s certainty equivalent, we ask them how certain they
are (in percent) that their true valuation of the lottery actually lies within a one-dollar win-
dow around their stated valuation. Similarly, after participants state probabilistic beliefs in
canonical belief updating experiments, we ask them how certain they are that the Bayesian
posterior is contained in a two percentage point window around their stated belief. These
questions elicit people’s subjective percent chance that their decision is actually (close to)
the ex-ante utility-maximizing one.

This cognitive uncertainty elicitation has five main features. (i) The measure admits
a direct theoretical interpretation of awareness of noise. (ii) As documented by our three
applications, the elicitation can be tweaked in minor ways to be applicable to a broad set
of decision domains with very different experimental paradigms and elicitation protocols.
(iii) The question is a composite measure that potentially captures people’s awareness of a
multitude of cognitive imperfections, such as imperfect perception, preference uncertainty,
problems in integrating utils and probabilities, lack of knowledge of Bayes’ rule, compu-
tational difficulties or memory imperfections. As a result, a productive interpretation of
cognitive uncertainty is that it captures people’s subjective difficulty or perceived complex-
ity of a problem. (iv) The measure is very simple, quick and costless to elicit, making it
easy for researchers to add such a question to their own studies. (v) Cognitive uncertainty
is strongly correlated with decision variability in repetitions of the same decision problem,
which is a key choice signature of (cognitive) noise.

We find large variation in cognitive uncertainty in all of our decision domains. In choice
under risk, more than 80% of all decisions are associated with strictly positive cognitive
uncertainty, and this number rises to more than 90% in belief updating. Participants appear
relatively consistent in their degree of cognitive uncertainty, both across repeated decisions
within the same domain (r ≈ 0.7) and across different decision domains.

Measured cognitive uncertainty strongly predicts observed choices and beliefs in a way
that sheds light on the empirical anomalies summarized in Figure 1. In all three decision
domains, high cognitive uncertainty decisions are substantially more compressed and less
responsive to variation in objective probabilities. For example, in choice under risk, high
cognitive uncertainty decisions exhibit a substantially shallower slope of the probability
weighting function, which implies that cognitive uncertainty is strongly correlated with the
well-known fourfold pattern of risk attitudes. For decisions with cognitive uncertainty of
zero, the median decision exhibits essentially no probability weighting.

In the domains of beliefs and expectations, we likewise see that high cognitive uncer-
tainty beliefs are substantially more compressed towards 50:50. This means that cognitively

3



uncertain people will sometimes appear more optimistic and sometimes more pessimistic
than is warranted, purely depending on whether the true probability is high or low. Cog-
nitive uncertainty is also strongly predictive of more structural belief updating biases, in-
cluding base rate insensitivity and conservatism. We discuss implications of these results
for interpreting heterogeneity in economic expectations surveys.

The predictive power of cognitive uncertainty for compression effects in decisions is not
only driven by the extensive margin of cognitive uncertainty. Instead, the link is strictly
monotonic: people in the lowest cognitive uncertainty quartile respond more to objective
probabilities than people in the second quartile, who in turn respond more than those in the
third quartile, and so on. This shows that the magnitude of cognitive uncertainty contains
much information even away from the rational benchmark of zero, and that strictly positive
cognitive uncertainty is not just driven by measurement error.

We are agnostic over whether the strong correlations between cognitive uncertainty
and behaviors reflect a causal effect of the true (cognitive or decision) noise that under-
lies cognitive uncertainty or whether awareness of potential errors itself drives behaviors.
Under either interpretation, our hypothesis is that the link between cognitive uncertainty
and decisions partly reflects the complexity of identifying the utility-maximizing decision.
To directly investigate this complexity interpretation, we implement different treatments
that vary the complexity of the lottery valuation and belief updating tasks. In one set of
experiments, we vary the computational complexity of the decision problems by displaying
the relevant problem parameters (such as payout probabilities or base rates) as algebraic
expressions. In other experiments, we increase problem complexity by turning lotteries or
belief updating tasks into compound (multi-stage probabilistic) problems.

We always find that higher complexity leads to higher cognitive uncertainty, which lends
credence to our interpretation that cognitive uncertainty partly reflects the subjectively per-
ceived complexity of decision problems. Moreover, the compression effects summarized in
Figure 1 become substantially more pronounced in the more complex treatments. For in-
stance, contrary to the predictions of (cumulative) prospect theory, the probability weight-
ing function exhibits substantially stronger likelihood insensitivity when the decision prob-
lems are more complex. Similarly, in contrast to models of base rate neglect or conservatism
that rest on assumptions of fixed parametric biases, the magnitude of base rate insensitivity
and conservatism strongly depends on the complexity of the decision problem.

To sum up, this paper documents that cognitive uncertainty can be effectively used to
test hypotheses about cognitive or decision noise that are difficult to test otherwise. Our
results highlight that various judgment and decision errors that are traditionally viewed
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as distinct share, in fact, common cognitive origins: the noisy or heuristic decision-making
people engage in when they find a problem too complex to solve precisely. This insight en-
courages further research aimed at tying together seemingly-distinct behavioral economics
anomalies by focusing on the noise that is triggered by complexity. We believe a helpful
tool in this regard will be to routinely measure cognitive uncertainty in experiments and
surveys, especially given that it is fast and costless to do.

Our work relates to a growing interdisciplinary literature that documents that people
often have an awareness of the noisiness of their choices, memories and perceptions, and
that they take decisions that are in line with such awareness (e.g., Butler and Loomes,
2007; De Martino et al., 2013, 2017; Cubitt et al., 2015; Polania et al., 2019; Xiang et al.,
2021; Drerup et al., 2017; Honig et al., 2020). Our main contribution to this literature is to
document that cognitive uncertainty predicts biases across various economic decision tasks,
and that it can be used to tie together anomalies that are typically viewed as distinct.

Our paper builds on a broad theoretical literature that has linked probability weighting
and over- / underestimation of probabilities to different versions of noise. This includes the
recent literature on Bayesian models of cognitive noise (Woodford, 2019; Gabaix, 2019;
Gabaix and Laibson, 2017; Frydman and Jin, 2021), in particular the model of probability
weighting in Khaw et al. (2021).1 Other noisy decision models of probability weighting and
over- / underestimation of probabilities include, for example, Bhatia (2014); Marchiori et al.
(2015); Viscusi (1985, 1989); Blavatskyy (2007); Zhang et al. (2020); Erev et al. (1994).2
Despite the abundance of such models, leading recent reviews rarely even mention a po-
tential role of (cognitive) noise for the empirical regularities and instead emphasize models
with fixed “probability weighting”, “conservatism” or “extreme belief aversion” parameters
that are partly even meant to capture preferences (e.g., Fehr-Duda and Epper, 2012; Ben-
jamin, 2019). O’Donoghue and Somerville (2018) note that “the psychology of probability
weighting is poorly understood.” This view in the literature may reflect that few contri-
butions directly measure noise or attempt to explain behaviors across different decision
domains – both of which we contribute here.3

The paper proceeds as follows. Section 2 discusses theoretical background. Section 3
presents the experimental design. Sections 4–7 discuss the results and Section 8 concludes.

1Khaw et al. (2021) and Frydman and Jin (2021) also report experiments on cognitive noise and risk
taking, but these do not test predictions related to probability weighting.

2Wakker (2010) likewise speculates that likelihood insensitivity in probability weighting reflects cognitive
limitations. Erev et al. (2017) highlight how an “equal weighting” tendency leads to probability weighting.

3In a paper subsequent to ours, Oprea (2022) provides further evidence that probability weighting is
driven by complexity by showing that the fourfold pattern of risk attitudes also holds when risk is removed
from lottery choice problems. He reports that these patterns are strongly correlated with cognitive uncertainty.

5



2 Theoretical Considerations and Hypotheses

Various contributions have hypothesized that the patterns summarized in Figure 1 are
driven by different types of noise. Khaw et al. (2021) model a decision-maker who ex-
hibits cognitive noise when processing probabilities, which makes him regress towards an
intermediate prior, hence producing probability weighting (also see Gabaix, 2019). Earlier
related theoretical workmodeled probability weighting as resulting from Bayesian updating
from imperfect information about objective payout probabilities (Viscusi, 1989; Fennell and
Baddeley, 2012), decision or sampling noise (Blavatskyy, 2007; Bhatia, 2014), affective vs.
deliberate decision making (Mukherjee, 2010), or random fluctuations in risk preferences
(Bhatia and Loomes, 2017). Similarly, multiple contributions have argued that regression
of beliefs towards 50:50 may reflect noise or ignorance (Viscusi, 1985; Erev et al., 1994;
Marchiori et al., 2015; Moore and Healy, 2008; Fischhoff and Bruine De Bruin, 1999).

Our analysis builds on these models. We here present a stylized adaptation that illus-
trates how we think about the commonalities reflected in Figure 1. Our exposition builds
on the recent Bayesian cognitive noise literature (e.g., Khaw et al., 2021; Woodford, 2020;
Heng et al., 2020), though our interpretation of these models is more agnostic.

Overview. We consider situations in which a decision-maker (DM) with Bernoulli utility
function u(·) is tasked with making a decision a that depends on some objective proba-
bility p. We denote by a∗(p) ∈ ar gmax

a
EU(·) the DM’s true expected-utility maximizing

decision. We assume that, through deliberation, the DM only has access to a noisy mental
simulation of a∗(p). The noisiness of this mental simulation may depend on the complexity
of the decision problem.

Risky choice. The DM is asked to indicate his certainty equivalent for a lottery that pays
$1 with probability p and nothing otherwise. By standard arguments, normalizing u(1) = 1,
the expected-utility maximizing decision is given by a∗ = u−1(p).

Belief formation. In a fully controlled “balls-and-urns” belief updating task, the DM forms
beliefs about a binary state of the world, R or B. The DM has prior b = P(R) and receives
a binary signal (H or L) with diagnosticity h = P(H|R) = P(L|B). The Bayesian posterior
belief is given by p ≡ P(R|H) = P(B|L) = bh

bh+(1−b)(1−h) . A widely-used formulation that
we also leverage is a so-called Grether (1980) decomposition, which generates a linear
relationship between the Bayesian posterior odds, the prior odds, and the likelihood ratio:
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ln(p/(1−p)) = ln(b/(1−b))+ ln(h/(1−h)). We assume the incentive structure is such that
it is optimal for the DM to report his true beliefs, such that the utility-maximizing decision
is given by a∗ = p.

Economic forecasts. The DM forecasts a future binary state of the world, R or B, that cor-
responds to a real economic quantity not controlled by the experimenter, such as inflation
or stock market growth. In the past, the DM potentially received information about this
state of the world, which he processes using Bayes’ rule as described above, to arrive at
posterior p. We again assume the incentive structure is such that it is optimal for the DM to
report his true beliefs, a∗ = p.

Bayesian cognitive noise. As noted above, we assume that the DM does not have access
to the utility-maximizing decision a∗(p). This could be due to a variety of reasons. In risky
choice, the DM may not know his true utility function, may find it cognitively hard to in-
tegrate payoff probabilities and utils, or may have noisy perception. In laboratory belief
updating tasks, the DMmay not know Bayes’ rule or struggle with implementing it computa-
tionally. In economic expectations surveys, the DMmay have forgotten financial information
that he received in the past, or he may struggle with processing the financial information
available to him.

Whatever the underlying cognitive foundations, as we lay out formally in Appendix A, we
assume that the DM has access to a cognitive signal S that is (scaled) Binomially distributed
with precision N and satisfies E[S] = a∗(p).⁴ This cognitive signal could be interpreted as
the outcome of a sequential cognitive sampling or deliberation process as in drift-diffusion
models. Higher cognitive noise corresponds to a less precise Binomial signal. Relatedly, we
can think of the level of cognitive noise – and, hence, the precision of the Binomial signal –
as being determined by the complexity of the decision problem. Indeed, we will provide
evidence below that higher complexity induces more cognitive noise.

Suppose that the DM holds a Beta-distributed prior over a∗(p) and that his decision
is given by the Bayesian posterior mean over his utility-maximizing decision.⁵ We refer

⁴In contrast to Khaw et al. (2021), our framework features cognitive noise at the level of the utility-
maximizing decision, rather than of a problem input parameter. We focus on noise in output space because
we wish to be transparent that neither we nor our empirical cognitive uncertainty measure take a stance on
what the source of cognitive noise is; we believe it is likely that there is more than one. Appendix A.4 discusses
how similar predictions to the ones we state below emerge when one compares the behavior of a noiseless
and a noisy agent in the framework of Khaw et al. (2021).

⁵This assumption has two different interpretations. A first one is that the DM chooses the posterior mean
as a heuristic strategy. Indeed, it not entirely clear why a DM who cannot determine a Bayesian posterior
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to the mean of the prior, d, as the “cognitive default decision.” Given signal realization
s ∼ f (s | a∗(p)), a Bayesian DM’s decision, ao, can be represented as a convex combination
of the cognitive signal and the prior mean, see Appendix A:

ao = λ(N) · s+ [1−λ(N)] · d (1)

E[ao] = λ(N) · a∗(p) + [1−λ(N)] · d (2)

Here, the relative weight placed on the cognitive signal, λ(N), increases in the signal’s
precision N . This decision rule is compatible with an anchoring-and-adjustment heuristic
(Tversky and Kahneman, 1974), according to which people anchor on some initial reaction,
d, and then adjust in the direction of the true utility-maximizing decision upon deliberation.

We interpret the prior mean d as the decision the DM would take in the absence of any
deliberation. We do not provide a theory of what determines the prior. For our purposes,
all that matters is that its mean is sufficiently “intermediate” in nature: for low enough p,
a∗(p) < d, and for large enough p, a∗(p) > d. An intermediate prior implies that people’s
decisions look like they treat different payout probabilities as more similar than they really
are, consistent with the emphasis on “equal weighting” in Erev et al. (2017). Indeed, a
large literature argues that people’s heuristic (or initial) responses to decision problems are
intermediate, such as in research on central tendency effects in judgment and perception
(e.g., Hollingworth, 1910; Petzschner et al., 2015; Xiang et al., 2021), compromise effects
in choice (Simonson and Tversky, 1992; Beauchamp et al., 2019), and research that inter-
prets 50:50 responses in economic expectations surveys as a manifestation of “I don’t know”
(Fischhoff and Bruine De Bruin, 1999). The prior distribution could also be partly adapted
to which decision “makes sense” on average in a given context.⁶

Note that an alternative interpretation of the DM’s decision process that is formally very
similar to the Bayesian cognitive noise model in terms of its implications for observable
decisions is that of random choice.⁷

or a certainty equivalent should be cognitively capable of best-responding to relatively involved incentive
structures. A second interpretation is that utility is linear and the DM best-responds to the incentives present
in the experiment. In our belief updating experiments, the loss function is quadratic, such that the posterior
mean is optimal. In our lottery choice experiments, the implied loss function under risk neutrality is the
absolute distance, such that the median is optimal. However, with a Binomial distribution, using the mean
instead of the median is without much loss because the mean of a Beta(a,b) variable is a/(a + b), the mode
is (a− 1)/(a+ b− 2) and the median lies between the two.

⁶In their study of inverse S-shaped probability and frequency estimates, Zhang andMaloney (2012) report
that a 1/N formulation (N being the number of states of the world) captures people’s cognitive anchor well.

⁷This second possible account of eq. (1) is that with probability λ the DM deliberates and plays his
resulting cognitive signal s, whereas with probability (1−λ) he plays randomly by drawing from a distribution
function with mean d. Under this interpretation, the probability of playing randomly increases in the DM’s
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Discussion. The linear equation (2) corresponds to thewidely-studied “neo-additive weight-
ing function” that has attracted attention in the literature on choice under risk. Our stylized
framework motivates this functional form by endogenizing its parameters: (i) the intercept
increases in noise and (ii) the slope decreases in noise. A characteristic feature of this de-
cision rule is the “flipping” property implied by Figure 1. For instance, in lottery valuation
tasks, relative to a noiseless DM, a cognitively noisy DM is less risk averse for low payout
probabilities yet more risk averse for high payout probabilities.

Equation (2) implies an attenuated but linear mapping between objective probabilities
and decisions (when utility is linear). As summarized in Figure 1, decisions actually tend
to be inverted S-shaped functions of objective probabilities. We explore how cognitive un-
certainty relates to this phenomenon in Section 8 and Appendix D. To foreshadow this
discussion, we find that empirically measured cognitive uncertainty is hump-shaped in ob-
jective probabilities, which helps understand why we typically observe a higher sensitivity
of responses to probabilities close to the boundaries than at intermediate levels.

Predictions. Formal statements of predictions and proofs are relegated to Appendix A.

1. Cognitive noise and compression effects.

(a) In risky choice, cognitive noise is correlated with probability weighting: ∃p∗ such
that, for p < p∗, certainty equivalents increase in cognitive noise and for p > p∗

they decrease in cognitive noise.

(b) In stated beliefs and economic forecasts, cognitive noise is correlated with overesti-
mation of small and underestimation of large probabilities. In Grether decomposi-
tions, cognitive noise is correlated with base rate insensitivity and conservatism.

2. The distance between the DM’s decision and the utility-maximizing decision increases in
cognitive noise.

Empirical implementation: Cognitive uncertainty. People’s actual level of cognitive noise
is conventionally unobservable. To render the predictions testable, we make use of the idea
that awareness of cognitive noise generates subjectively perceived uncertainty about what
the utility-maximizing decision is. This cognitive uncertainty is measurable. In the context

cognitive noisiness. Note that the only difference between the Bayesian cognitive noise and random choice
interpretations of equation (2) is whether the DM’s average action is attenuated because he regresses to a
fixed prior or because he chooses randomly. We embrace both of these interpretations.
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of the framework sketched above, we define it as

pCU ≡ P(| [a∗|S = s]− ao |> κ). (3)

Here, a∗|S = s denotes the perceived posterior distribution about the maximizing decision,
conditional on having received cognitive signal s. Intuitively, cognitive uncertainty captures
the likelihood with which the DM thinks his utility-maximizing decision falls outside a
window of arbitrary length κ around the decision that he actually chose.⁸

As we show in Appendix A, cognitive uncertainty decreases in the precision of the Bino-
mial cognitive signal. This allows us to use cognitive uncertainty as a proxy for the magni-
tude of cognitive noise and, hence, λ. Our argument is not that awareness of cognitive noise
necessarily causes the economic behavior of interest (though it may), but that it allows for
the measurement of a concept that is difficult to quantify otherwise.

3 Experimental Design

3.1 Overview

As summarized in Table 1, we implemented two sets of experiments. The main set of ex-
periments reported here, identified by letter A, was run in early 2022. Earlier experiments
(“B”) were run in 2019. We summarize both sets of experiments here but relegate a detailed
exposition of the B experiments to Appendix E.

3.2 Decision tasks

Choice under risk. To estimate a probability weighting function, treatment Risk A elicited
certainty equivalents for binary lotteries that paid $y ∈ {15,16, . . . , 25} with probability
p ∈ {1,5, 10,25, 35,50, 65,75, 90,95, 99} percent, and nothing otherwise. Certainty equiv-
alents were elicited using the BDM technique proposed by Healy (2018). Participants were
instructed that for each lottery there is a list of questions that ask whether the participant
prefers the lottery or a safe payment, where the safe payment increases as one goes down
the list. Following Healy (2018), instead of asking participants to make a decision in every
row of the list, we instructed them that they would tell us the safe amount at which they

⁸In empirical implementations, κ should be chosen so that the resulting measurement picks up as much
variation as possible. This implies that the choice of κ depends on the response scale and should be neither
too small nor too large, in order to avoid bunching at 1 or 0, respectively.
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Table 1: Overview of experiments

Experiment Components # Particip. Pool

Risk A Baseline risky choice tasks (gains) 500 ProlificComplex numbers manipulation

Beliefs A Baseline belief updating tasks 500 ProlificComplex numbers manipulation

Risk B Baseline risky choice tasks (gains and losses) 700 AMTCompound lottery manipulation

Beliefs B Baseline belief updating tasks 700 AMTCompound belief manipulation

Notes. All experiments elicited expectations about the one-year return of the S&P
500, and the B experiments additionally measured expectations about one-year infla-
tion rates and the national income distribution. AMT stands for Amazon Mechanical
Turk.

would switch from preferring the lottery to preferring the safe payment, and that we would
then fill out the entire choice list based on their decision. Thus, participants simply entered
a dollar amount into a text box to indicate their certainty equivalent, where entries were
restricted to be between zero and the lottery upside. Each participant initially stated their
valuation of six randomly selected lotteries.

The two main advantages of this design are that (i) it eliminates the need to go through
a long choice list that may be mentally tiring for participants and (ii) it is well-known that
the choice list procedure has its own effects on behavior (e.g., Beauchamp et al., 2019),
and we wanted to ensure that our results on cognitive uncertainty do not just capture such
choice list effects.

In treatment Risk B, on the other hand, we instead implemented standard choice lists
of the type used by, for example, Tversky and Kahneman (1992); Bruhin et al. (2010);
Bernheim and Sprenger (2019). The fact that the results turn out to be very similar suggests
that the elicitation technique as such does not generate our results.

We often work with a simple linear transformation of elicited certainty equivalents, nor-
malized certainty equivalents, which are given by the certainty equivalent divided by the
upside of the lottery (a quantity that is by construction between 0 and 100%).

Belief updating. In designing a structured belief updating task, we follow the recent re-
view by Benjamin (2019) and implement the workhorse paradigm of so-called “balls-and-
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urns” or “bookbags-and-pokerchips” experiments. In treatment Beliefs A, there are two bags,
A and B. Both bags contain 100 balls, some of which are red and some of which are blue.
The computer randomly selects one of the bags according to a pre-specified base rate. Sub-
jects do not observe which bag was selected. Instead, the computer selects one or more
balls from the selected bag at random (with replacement) and shows them to the subject.
The subject is then asked to state a probabilistic guess that either bag was selected. We
visualized this procedure for subjects using the image in Appendix Figure 8.

The three key parameters of this belief updating problem are: (i) the base rate b ∈
{1,5, 10,30, 50,70, 90,95, 99} (in percent), which we operationalized as the number of
cards out of 100 that had “bag A” as opposed to “bag B” written on them; (ii) the signal
diagnosticity d ∈ {65, 75,90}, which is given by the number of red balls in bag A and the
number of blue balls in bag B (we only implemented symmetric signal structures such that
P(red|A) = P(blue|B)); and (iii) the number of randomly drawn balls M ∈ {1, 3,5}. These
parameters were randomized across trials but always known to participants.

Each subject initially completed six belief updating tasks. Financial incentives were im-
plemented through the binarized scoring rule (Hossain and Okui, 2013). Here, the proba-
bility of receiving a prize of $10 was given by π = max

�

0,1− 0.0001 · (g − t)2
	

, where g

is the guess (in %) and t the true state (0 or 100).

Economic forecasts. All of our experiments also elicited forecasts of economic variables
such as stock market returns. A conceptual difference between expectations about real-
life quantities and the types of experimental tasks summarized above is that in the latter
the experimenter supplies all information that the subject needs to make a well-defined
rational decision, while in expectations surveys the experimenter does not have access to the
respondent’s information set. Still, cognitive uncrtainty can be measured in a very similar
way. Indeed, intuitively, people may well exhibit cognitive uncertainty about their economic
expectations: they may not perfectly remember their current beliefs about the stock market
(or the information they received in the past), or they may worry that they have incorrectly
processed past information.

In our A study (N = 1,000, see Table 1), we elicit probabilistic forecasts of the per-
formance of the S&P 500. Because incentivizing expectations about future events creates
various logistical issues such as credibility concerns and the necessity to wait for future
variables to have realized, we elicited them without financial incentives. This is line with
the vast majority of the literature on survey expectations. Each participant responsed to the
following question:
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The S&P 500 is an American stock market index that includes 500 of the largest
companies based in the United States. Jon invested $100 in the S&P 500 today.
What is the percent chance that the value of his investment will be less than $y in
one year from now?

Across participants, the value of y was drawn at random from the set {62, 77, 90, 100, 112,
123, 127, 131, 134}. These values were chosen such that the corresponding historical return
probabilities (from 1980 to 2018) vary between 1% and 99%. For example, the historical
probability that a $100 investment will be worth less than $127 one year later is 75%. In
our “B” experiments, we also elicited beliefs about future inflation rates and the national
income distribution in a very similar manner, see Appendix E.

3.3 Measuring Cognitive Uncertainty

Elicitation. In all decision tasks summarized above, decisions are given by a scalar. Loosely
speaking, we always measure cognitive uncertainty (CU) on the subsequent screen by elic-
iting the participant’s subjective probability that their expected-utility maximizing decision
is contained in a window around their actual decision.

In choice under risk, we reminded participants of the lottery they were exposed to on
the previous screen and then asked:

Your decision on the previous screen indicates that you value this lottery as much
as receiving $x with certainty. How certain are you that you actually value this
lottery somewhere between getting $(x-0.50) and $(x+0.50)?

Participants answered this question by selecting a radio button between 0% and 100%, in
steps of 5%. Appendix G.1 provides screenshots. In line with the discussion in Section 2,
we interpret this question as capturing the participant’s (posterior) uncertainty about their
utility-maximizing decision, after some sampling of cognitive signals has taken place. We
refer to inverted responses to this question as cognitive uncertainty rather than confidence
because in economics the latter is commonly used for problems that have an objectively
correct solution.

In belief updating, the instructions introduced the concept of an “optimal guess.” This
guess, we explained, uses the laws of probability to compute a statistically correct statement
of the probability that either bag was drawn, based on Bayes’ rule. We highlighted that this
optimal guess does not rely on information that the subject does not have. After indicating
their probabilistic belief, subjects were asked (see Appendix Figure G.2):
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Your decision on the previous screen indicates that that you believe there is a x%
chance that Bag A was selected. How certain are you that the optimal guess is
somewhere between (x-1)% and (x+1)%?

In economic forecasts, the elicitation is very similar, asking how certain the respondent
is that their probabilistic guess is within a one percentage point band around the guess
that’s optimal given the information available to the respondent. Thus, the question does not
elicit people’s awareness of their lack of information, but instead their perceived ability
to appropriately remember and process the information available to them (see Appendix
Figure G.3):

On the previous screen, you indicated that you think there is a x% chance that a
$100 investment into the S&P 500 today will be worth less than $y in one year from
now. How certain are you that the statistically optimal guess (given the information
you have) is somewhere between getting (x-1)% and (x+1)%?

The biggest difference between our A experiments and the B experiments conducted earlier
is the wording of the CU question. In the B experiments, we did not elicit participant’s
subjective probability that the utility-maximizing decision is within some fixed band around
their actual decision, but rather a heuristic confidence interval. In choice under risk, subjects
used a slider to calibrate the statement “I am certain that the lottery is worth between a and
b to me.” If the participant moved the slider to the very right, a and b corresponded to the
previously indicated certainty equivalent. For each of the 20 possible ticks that the slider was
moved to the left, a decreased and b increased by 25 cents, in real time. In belief updating
questions and economic forecasts, subjects navigated a slider to calibrate the statement “I
am certain that the optimal guess [economic forecasts: statistically optimal guess] is between
a and b.”, where a and b collapsed to the subject’s own previously indicated guess in case
the slider was moved to the very right. For each of the 30 possible ticks that the slider was
moved to the left, a decreased and b increased by one percentage point. See Appendix E
for further details. We believe the new measure to be superior in that it admits a direct
quantitative interpretation and is more intuitive for subjects. This being said, the results
are qualitatively very similar across both sets of experiments.

Potential origins of cognitive uncertainty. Our measure is deliberately designed to cap-
ture participants’ overall subjective uncertainty about what their utility-maximizing deci-
sion is. This uncertainty could have various potential origins. In choice under risk, people
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may have imperfect perception, may not know their true preferences, or struggle with in-
tegrating utils and probabilities. In belief updating, participants may not know the norma-
tively correct updating rule, or struggle with its computational implementation. In survey
expectations, they may not remember information they received in the past, or may again
implement an incorrect updating rule. While we conjecture that it will often be of secondary
interest to economists what exactly the source of cognitive noise is (there are likely many),
we caution that our measure does not allow researchers to directly test models that take a
direct stance on the source of the noise.

Comparison with alternative measures. Broadly speaking, the literature has proposed
two different types of measures for eliciting people’s uncertainty about their own decisions.
At one extreme, psychologists, neuroscientists and some economists elicit measures of “de-
cision confidence,” in which subjects indicate on Likert scales how confident or certain they
are in their decision (e.g., De Martino et al., 2013, 2017; Polania et al., 2019; Xiang et al.,
2021; Butler and Loomes, 2007; Drerup et al., 2017). At the other extreme, economists
have used measures of across-trial variability in choices (Khaw et al., 2021) or deliberate
randomization (Agranov and Ortoleva, 2017, 2020). Our preferred measure strikes a mid-
dle ground between these two approaches. While our approach retains the attractive sim-
plicity of implementing a single question (as in the psychology literature), it is also admits
a direct quantitative interpretation in terms of a subjective percent chance.⁹ The simplic-
ity of asking one question per decision should be contrasted with the approach of gauging
cognitive noise through across-task variability in choices, which requires many trials and is
often defined at the level of a study rather than of a single choice problem.

Financial incentives and validation. We deliberately do not financially incentivize our
elicitation of CU, for two reasons. First, an additional scoring rule makes the measure it-
self more complex, which increases the cognitive burden on participants. Indeed, recent
work documents that unincentivized measures of beliefs are sometimes superior to incen-
tivized ones because they reduce the strategic incentives to game a potentially complex
(and misperceived) scoring rule (Danz et al., 2020). Second, we believe that financially in-
centivizing the measurement in potentially complicated ways would increase the costs for
future researchers to include a CU measure in their experiments and surveys.

We validate our simple-but-unincentivized measure below by documenting correlations

⁹We have found that economists are often more comfortable with uncertainty questions that have a precise
quantitative meaning in terms of probabilities, which Likert scales do not.
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with across-trial variability in repetitions of the same decision problem, which is commonly
viewed as a key signature of cognitive noise.

3.4 Complexity Manipulations

Our experiments link cognitive noise to decisions in two ways. First, we correlate decisions
with cognitive uncertainty (awareness of noise). Second, we exogenously manipulate the
noisiness of decisions by making the decision tasks more complex. In doing so, we focus on
the choice under risk and balls-and-urns belief updating experiments because they allow
for more controlled variation.

Complex numbers. In our main experiments, Risk A and Beliefs A, the complexity manip-
ulation is given by representing payout probabilities (in choice under risk) and base rates /
signal diagnosticies (in belief updating) as mathematical expressions, such as “Get $20 with
probability (7× 6/2− 11)%.” These treatments were implemented in a between-subjects
design: after each subject had completed six baseline tasks of either risky choice or belief
updating, for a second set of six tasks they were randomized into either another set of
baseline tasks or a set of the complex numbers tasks.

Compound problems. In our experiments Risk B and Beliefs B, we instead manipulated
complexity by deploying compound problems. We hypothesize that these are more com-
plex for people to think through than the normatively identical reduced problems. The
compound problems were randomly interspersed with the respective baseline problems in
a within-subjects design. In choice under risk, if a baseline lottery is given by a p% chance
of getting $20, then the corresponding compound lottery is to get $20 with probability
p′ ∼ U{p − 0.05, . . . , p + 0.05}. In terms of implementation, we told participants that the
probability of receiving the lottery upside was unknown to them and would be randomly
determined by drawing from a known interval, such that each integer is equally likely to
get drawn. Because expected utility is linear in probabilities, this compound manipulation
does not affect the normative benchmark for behavior.

In belief updating, if a baseline updating problem features signal diagnosticity h and
base rate b = 50%, then the corresponding compound updating problem features diagnos-
ticity h′ ∼ U{h−0.1, . . . , h+0.1}. It is straightforward to verify that the Bayesian posterior
for these two updating problems is identical.

16



3.5 Experiments A and B

We here summarize the main differences between treatments Risk A and Beliefs A on the
one hand, and Risk B and Beliefs B on the other hand. (i) The CU measurement differs
in wording and quantitative interpretation. (ii) The risky choice tasks were implemented
using different procedures: with a BDM mechanism à la Healy (2018) in the A experiments
and as a visual multiple price list in the B experiments. (iii) The complexity manipulations
differ. Moreover, these were implemented in a between-subjects format in the A experiments
and in a within-subjects format in the B experiments. (iv) The A experiments feature some
repeated, identical problems that allow us to study choice variability. (iv) The B experiments
include a broader set of questions measuring economic forecasts.

3.6 Logistics and Participant Pool

As summarized in Table 1, our A experiments were conducted on Prolific, while the B ex-
periments were run on Amazon Mechanical Turk. The B experiments were pre-registered,
see Appendix E.

In both sets of experiments, we took two measures to achieve high data quality. First,
our financial incentives are unusually large both by AMT and Prolific standards. Average
hourly earnings in our experiments exceed the target compensation on those platforms
by roughly 190% and 250%, respectively. Second, we screened out inattentive prospective
subjects through comprehension questions and attention checks. In total, 53% and 54% of
all prospective participants were screened out in experiments Risk and Beliefs, respectively.
Screenshots of instructions and comprehension check questions can be found in Appendix G.

The timeline of Risk A and Beliefs A was as follows: (i) main incentivized task; (ii) hypo-
thetical economic forecast question; (iii) incentivized Raven matrices test; (iv) demographic
questionnaire. Participants received a completion fee of $3 in both treatments. In addition,
each participant potentially earned a bonus.With probability 30%, a randomly-selected task
of part (i) was payoff-relevant and with probability 70% part (iii) was paid out. Average
earnings in Risk A were $8.10 and $4.80 in Beliefs A.

4 Cognitive Uncertainty: Variation and Validation

Variation. Figure 2 shows histograms of task-level CU in the baseline tasks of Risk A and
Beliefs A as well as for stock market expectations. The magnitude of CU should not be com-
pared across decision domains because the length of the interval with respect to which CU
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Figure 2: Histograms of cognitive uncertainty in the baseline tasks in Risk A (N = 4, 524), Beliefs A (N =
4,590) and stock market expectations (N = 1, 000).

is measured is not comparable. Rather, we show these histograms side-by-side to illustrate
(i) that a large majority of decisions reflect strictly positive CU and (ii) the large hetero-
geneity in CU. 83% of the certainty equivalents in Risk A, 93% of beliefs in Beliefs A and
97% of stock market forecasts are associated with strictly positive CU.

Stability. An obvious question is whether the unincentivized CU question picks up real
variation or just noise. A first indication is to look at whether the histograms shown above
largely capture within- or across-subject variation. In lottery choice and belief updating,
where we observe multiple decisions per subject, 51–54% of the variation in the CU data is
explained by participant fixed effects. Given that some of the residual variation likely reflects
measurement error, this suggests that across-subject variation is the dominant source of
variation in the CU data, and that participants are relatively consistent in their degree of
CU within a given domain.

A second indicator for stability is a within-subject test-retest correlation. This is feasi-
ble in our context because in lottery choice and belief updating we implemented at least
two decision problems twice. We find that CU is highly correlated across these randomly
interspersed elicitations (r = 0.70 in Risk and r = 0.68 in Beliefs).

A final indicator for stability is cross-domain stability. We correlate average CU in choice
under risk with CU in stock market expectations, and average CU in lab beliefs with CU
in stock market expectations. The Spearman correlations are given by ρ = 0.19 for risky
choice and ρ = 0.35 for belief updating (p < 0.01 for both correlations). This further
suggests some within-person stability of CU.
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Table 2: Correlates of cognitive uncertainty

Dependent variable:
Cognitive uncertainty

Choice under risk Belief updating Stock market exp.

(1) (2) (3) (4) (5) (6)

1 if female 0.064∗∗∗ 0.063∗∗∗ 0.054∗∗∗ 0.052∗∗∗ 0.11∗∗∗ 0.11∗∗∗
(0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

Age -0.0017∗∗∗ -0.0017∗∗∗ -0.0016∗∗∗ -0.0016∗∗∗ -0.0048∗∗∗ -0.0048∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Ln [Time taken for study] -0.018 -0.018 0.011 0.011 0.034 0.034
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Raven matrices score (0-4) -0.022∗∗ -0.021∗∗ -0.00076 -0.0014 0.0035∗ 0.0035∗
(0.01) (0.01) (0.01) (0.01) (0.00) (0.00)

1 if college degree 0.00059 0.0023 0.023 0.024 -0.029 -0.029
(0.02) (0.02) (0.01) (0.01) (0.02) (0.02)

Extremity of normative decision -0.19∗∗∗ -0.31∗∗∗ 0.00026
(0.03) (0.03) (0.00)

Constant 0.47∗∗∗ 0.52∗∗∗ 0.28∗∗ 0.37∗∗∗ 0.36∗∗ 0.35∗∗
(0.14) (0.14) (0.12) (0.12) (0.16) (0.16)

Observations 4524 4524 4602 4602 1000 1000
R2 0.04 0.05 0.02 0.06 0.09 0.09

Notes.OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The extremity of
the normative decision is given by the absolute distance of the normative decision to 50%, where the normative
decision is assumed to reflect risk-neurality in lottery choice, Bayesian beliefs in belief updating and historical
probabilities in stock market expectations. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Correlates. Regarding demographic correlates of CU, the most consistent pattern is that
– across all three decision domains – women report about 5-11 percentage points higher
CU, akin to a large body of evidence on other domains of confidence (see Table 2). We
also find that older participants report lower CU, though the quantitative magnitude of this
relationship is small. Meanwhile, total response time for the survey and proxies for cognitive
ability (score on a Raven matrices test and a college degree) are largely unrelated to CU.

Finally, in lottery choice and belief updating, CU strongly decreases in the extremity of
the normative benchmark, i.e., the absolute distance of the normative benchmark to 50%.
In lottery choice, subjects indicate lower CU if the payout probability is far away from 50%,
suggesting that, for example, valuing a lottery with payout probability of 95% is easier than
valuing a lottery with payout probability 60%. In belief updating, CU reveals that subjects
find it easier to state beliefs for problems that have Bayesian posteriors close to zero or one.
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Cognitive uncertainty and choice variability. Some researchers have used choice vari-
ability as an empirical measure of cognitive noise (e.g., Khaw et al., 2021). We examine the
empirical correspondence between our CU question and variability for two reasons. First,
data on choice variability is useful to understand whether people’s subjective perception
of their own noisiness is roughly accurate. Second, a correlation between CU and choice
variability may be seen as validation of our quantitative-but-unincentivized question, in the
spirit of recent experimental validation studies in the literature (e.g., Falk et al., 2015).

We compute across-trial variability as absolute difference in decisions across two repeti-
tions of the same problem.We find that decisions that are associated with higher average CU
across the two trials are more variable, see Appendix Figure 6. The Spearman correlation is
ρ = 0.27 in choice under risk and ρ = 0.30 in belief updating (p < 0.01 in both datasets).
These results resonate with those from our work on cognitive uncertainty in intertemporal
choice, in which cognitive uncertainty and across-trial variability in responses are likewise
significantly correlated (Enke et al., 2022).

5 Results: Cognitive Uncertainty Predicts Bias

5.1 Visual Illustration of Compression Effects

We begin by analyzing the data in the baseline tasks.1⁰ The left-hand panels of Figure 3 sum-
marize the link between cognitive uncertainty and compression effects in the treatment of
probabilities. Both panels are constructed following the same logic, by plotting participants’
(normalized) decisions against objective probabilities. Panel A shows normalized certainty
equivalents as a function of payout probabilities in Risk A. Panel B shows posterior beliefs as
a function of Bayesian posteriors in Beliefs A. Panel C shows subjective stock return expec-
tations as a function of historical probabilities. The dots show medians within the samples
of above- and below-median cognitive uncertainty decisions, respectively.

We see that decisions are always substantially more compressed towards intermediate
options in the presence of higher cognitive uncertainty. For instance, in choice under risk,
the median decision of low cognitive uncertainty subjects is frequently visually indistin-
guishable from the benchmark of no probability weighting. This pattern implies the “flip-
ping” property discussed in the theoretical framework: cognitively uncertain decisions are

1⁰In both Risk A and Beliefs A, each subject first completed six such baseline tasks, after which half the sub-
jects completed six additional baseline tasks, while the remaining half completed the complex math problems.
As a result, the data in this section consist of twelve tasks for some subjects and six tasks for others.
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less risk averse for low probabilities but more risk averse for high probabilities. We interpret
these patterns as showing that what the literature often refers to as “probability-dependent
risk preferences” are, in fact, due to bounded rationality (cognitive noise).

It is instructive to compare the patterns in Panel A with those that should be expected
from an expected-utility maximizer. As discussed in Section 2, normalizing utility from the
lottery upside to one, the expected-utility maximizing decision is given by a∗ = u−1(p). Un-
der risk neutrality, normalized certainty equivalents should be located on the 45-degree
line. Under strict risk aversion, they should be a convex increasing function of payout prob-
abilities, located strictly below the 45-degree line.

In the belief updating task, Panel B, the median posteriors of low cognitive uncertainty
decisions are likewise relatively close to the rational benchmark. In contrast, cognitively
uncertain beliefs reflect pronounced overestimation of small and underestimation of high
probabilities. Thus, the phenomenon of “extreme belief aversion” discussed in the review
by Benjamin (2019) reflects cognitive noise rather than preferences.

For the stock market expectations data, Panel C, we plot participants’ answers against
corresponding historical probabilities. Recall that participants never saw these probabili-
ties – we imputed them from the values of the returns whose probability the participants
were asked to assess. Similarly to the lab belief updating task, we see that cognitive uncer-
tainty is predictive of overestimation of small and underestimation of large probabilities.

The right-hand panels of Figure 3 provide a more complete picture of the relationship
between cognitive uncertainty and sensitivity to objective probabilities. We now split the
sample into cognitive uncertainty quartiles. Because in our lottery choice and belief updat-
ing experiments between 20% and 25% of all CU statements are equal to zero, the first
quartile in these two experiments almost corresponds to CU = 0, while the other quartiles
leverage variation in the intensive margin of CU. For each of the four CU buckets, we regress
observed (normalized) decisions on the respective objective probability (payout probability
in choice under risk, Bayesian posterior in belief updating and historical probability in stock
market expectations), and report the coefficient. If decisions did not depend on cognitive
noise, the four regression coefficients would be equally large. Instead, we see that the ef-
fect of objective probabilities monotonically decreases as CU increases. This shows that the
results are not just driven by the extensive margin of CU, but that higher CU is strongly
associated with more compression also within the sample of strictly positive CU.
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Figure 3: Left panels: median normalized certainty equivalents as function of payout probabilities (top, Risk
A), median beliefs as function of binned Bayesian posteriors (middle, Beliefs A) and median stock market
expectations as function of historical probabilities (bottom). All panels display bins with 30 or more obser-
vations. Low CU is below median. Whiskers show standard error bars. Right panels: coefficients from OLS
regressions of (normalized) decisions on objective probabilities, split by CU quartiles. Effect of payout prob-
ability on stated certainty equivalents (top, Risk A), effect of Bayesian posterior on stated beliefs (middle,
Beliefs A) and effect of historical probability on stated stock market expectations (bottom). Whiskers show
95% confidence intervals.
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5.2 Regression Evidence

5.2.1 Choice under risk

Table 3 studies the link between CU and likelihood insensitivity (probability weighting)
in risky choice more formally, through regression analyses. We estimate the neo-additive
weighting function in eq. (2). To this effect, we regress certainty equivalents on the payout
probability, cognitive uncertainty and their interaction. The framework in Section 2 predicts
that (i) the interaction coefficient is negative (indicating a shallower slope) and (ii) the raw
cognitive uncertainty term is positive, indicating a higher intercept.

Columns (1)–(2) of Table 3 document that both of these predictions are indeed borne
out in the data. In quantitative terms, an increase in cognitive uncertainty from 0% to 50%
is associated with a decrease in the slope of certainty equivalents with respect to payout
probabilities by 33.5 percentage points, a very large magnitude.

We likewise find that cognitive uncertainty is strongly related to the regression intercept,
as predicted by the model. In other words, the positive cognitive uncertainty raw term
does not mean that the probability weighting function of cognitively uncertain subjects has
higher elevation on average – it just means that the elevation at p = 0 is higher.

Columns (3)–(6) provide further evidence that these patterns imply the characteristic
“flipping” pattern that we anticipated in the discussion of the theoretical framework: for
small probabilities, cognitively uncertain decisions reflect significantly more risk seeking,
while for high probabilities they reflect less risk seeking.

Losses and MPL elicitation technique. Our earlier B experiments allow us to probe the
robustness of our results along two dimensions. First, we studied both gain and loss lotteries.
Second, the certainty equivalents were elicited using standard visual multiple price lists.
The results in these experiments are very similar to those reported above, in the sense that
cognitively uncertain decisions are significantly more compressed. This is true for both gains
and losses, see Appendix E.

The results in the B study imply a nuanced pattern about how CU is correlated with risk
seeking vs. risk averse behavior. Because CU is associated with “overweighting” of small
and “underweighting” of large probabilities for both gains and losses, we have that high CU
decisions reflect risk-seeking behavior for low probability gains and high probability losses,
but risk-averse behavior for high probability gains and low probability losses. In other words,
CU is predictive of the so-called fourfold pattern of risk attitudes.
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Table 3: Cognitive uncertainty and likelihood insensitivity in Risk A

Dependent variable:
Normalized certainty equivalent

Full sample p < 50% p ≥ 50%

(1) (2) (3) (4) (5) (6)

Payout probability 0.73∗∗∗ 0.73∗∗∗ 0.56∗∗∗ 0.55∗∗∗ 0.60∗∗∗ 0.59∗∗∗
(0.03) (0.03) (0.06) (0.05) (0.04) (0.04)

Payout probability × Cognitive uncertainty -0.67∗∗∗ -0.67∗∗∗
(0.08) (0.08)

Cognitive Uncertainty 25.1∗∗∗ 22.7∗∗∗ 15.0∗∗∗ 11.0∗∗ -26.3∗∗∗ -27.0∗∗∗
(6.18) (6.02) (5.64) (5.48) (3.51) (3.60)

Constant 19.7∗∗∗ 31.5∗∗∗ 22.3∗∗∗ 39.4∗∗∗ 30.7∗∗∗ 38.1∗∗∗
(2.35) (4.38) (2.35) (6.09) (3.23) (4.66)

Demographic controls No Yes No Yes No Yes

Observations 4524 4524 2035 2035 2489 2489
R2 0.49 0.50 0.10 0.15 0.32 0.32

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. De-
mographic controls include age, gender, college education and performance on a Raven matrices test.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

5.2.2 Belief Updating

Table 4 studies the link between cognitive uncertainty and belief updating in Beliefs A. Again,
the framework predicts that cognitive uncertainty should be related to (i) lower sensitivity
of beliefs to variation in objective probabilities and (ii) a higher intercept. Columns (1)–(2)
directly estimate the neo-additive decision rule in eq. (2) that our framework motivates.
Here, we link observed beliefs to Bayesian posteriors, cognitive uncertainty and their inter-
action. Consistent with the visual impression from the left-hand panels of Figure 3, cogni-
tively uncertain beliefs are substantially less sensitive to variation in Bayesian posteriors,
and their intercept is higher. In terms of quantitative magnitude, the regression coefficients
imply that moving from cognitive uncertainty of 0% to 50% is associated with a decrease
of the slope by 21 percentage points.

Grether regressions: Inelasticity to base rate and likelihood ratio (conservatism). The
literature typically highlights not only deviations of stated from Bayesian beliefs, but also
the ways in which people implicitly respond to variation in the base rate, the likelihood ratio
and the sample size (see Benjamin, 2019, for a review). As discussed in Section 2, we are
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Table 4: Cognitive uncertainty and belief updating in Beliefs A

Dependent variable:
Posterior belief Ln [Posterior odds]

(1) (2) (3) (4) (5) (6)

Bayesian posterior 0.71∗∗∗ 0.71∗∗∗
(0.02) (0.02)

Bayesian posterior × Cognitive uncertainty -0.43∗∗∗ -0.43∗∗∗
(0.06) (0.06)

Cognitive Uncertainty 12.8∗∗∗ 12.7∗∗∗ -0.47∗∗∗ -0.49∗∗∗ -0.48∗∗∗ -0.49∗∗∗
(3.54) (3.53) (0.14) (0.14) (0.13) (0.14)

Ln [Bayesian odds] 0.55∗∗∗ 0.55∗∗∗
(0.02) (0.02)

Ln [Bayesian odds] × Cognitive uncertainty -0.42∗∗∗ -0.42∗∗∗
(0.07) (0.07)

Log[Prior Odds] 0.69∗∗∗ 0.69∗∗∗
(0.03) (0.03)

Log[Likelihood Ratio] 0.37∗∗∗ 0.37∗∗∗
(0.03) (0.03)

Ln [Prior odds] × Cognitive uncertainty -0.52∗∗∗ -0.52∗∗∗
(0.10) (0.10)

Ln [Likelihood ratio] × Cognitive uncertainty -0.21∗∗∗ -0.21∗∗∗
(0.07) (0.07)

Constant 19.5∗∗∗ 18.7∗∗∗ 0.23∗∗∗ 0.29∗∗ 0.24∗∗∗ 0.28∗∗
(1.53) (2.22) (0.06) (0.12) (0.06) (0.11)

Demographic controls No Yes No Yes No Yes

Observations 4602 4602 4602 4602 4602 4602
R2 0.49 0.49 0.45 0.45 0.48 0.48

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. To avoid a
mechanical loss of observations resulting from the log odds definition, the log posterior odds in columns (3)–
(6) are computed by replacing stated posterior beliefs of 100% and 0% by 99% and 1%, respectively. The
results are virtually identical without this replacement. Demographic controls include age, gender, college
education and performance on a Raven matrices test. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

interested in whether cognitive noise could generate the well-known phenomena of base
rate insensitivity, conservatism (likelihood ratio insensitivity) and sample size insensitivity.

To analyze this empirically, we resort to so-called Grether regressions (Grether, 1980).
This specification is derived by expressing Bayes’ rule in logarithmic form, which implies
a linear relationship between the posterior odds, the prior odds, and the likelihood ratio.
The canonical finding in the literature is that in these regressions the observed coefficients
of the log prior odds and the log likelihood ratio are usually considerably smaller than the
Bayesian benchmark of one. As discussed in Section 2 and shown in Appendix A, our stylized
cognitive noise model predicts that higher cognitive noise leads to higher insensitivity in
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these regressions. A simple intuition is that if someone always stated posterior beliefs of
50:50, their sensitivity of beliefs to the base rate and likelihood ratio would be zero.

Columns (3) and (4) of Table 4 estimate a restricted version of a Grether regression, in
which we relate the subject’s log posterior odds to the log Bayesian odds. This analysis is
instructive because it takes place in log odds space (as motivated by the Grether decomposi-
tion), but essentially uses the same variables as in columns (1) and (2). Again, we find that
cognitive uncertainty is strongly predictive of the degree of insensitivity of log posterior
odds with respect to the Bayesian benchmark.

Finally, columns (5) and (6) estimate a standard Grether regression, except that we also
account for interactions with cognitive uncertainty. The negative interaction coefficients
show that cognitive uncertainty is strongly related to base rate insensitivity and likelihood
insensitivity (conservatism). The quantitative magnitudes of the regression coefficients sug-
gest that, for example, base rate sensitivity decreases from 0.69 with CU of 0% to 0.43
with CU of 50%.11 These patterns document that (at least a part of) what this literature
has identified as base rate neglect, conservatism and extreme belief aversion are in fact not
independent psychological phenomena but instead all generated by cognitive noise and
resulting compression effects.

Sample size effects. As is well known in the literature, experimental data also reveal sys-
tematic variation in stated beliefs conditional on Bayesian posteriors. For instance, for a
given base rate, the draw of one blue ball gives rise to the same Bayesian posterior as the
draw of two blue balls and one red ball, yet experimental participants consistently update
more strongly after observing one blue ball (Benjamin, 2019). A common explanation is
that subjects update based on sample proportions, while Bayesian updating prescribes up-
dating based on sample differences. Our account of cognitive uncertainty also provides an
explanation for this pattern. The straightforward reason is that stated cognitive uncertainty
significantly increases in the sample size, holding the sample difference and the Bayesian
posterior fixed (see Appendix Table 6). That is, subjects appear to find it easier to form
beliefs based on one blue ball than based on two blue balls and one red ball. As a result
of this systematic variation in cognitive noise, our account correctly predicts that subjects
respond more to the sample difference when the sample size is smaller.

11The interaction coefficients are larger for the log prior odds than for the log likelihood ratio. We can only
speculate about why this is the case. In our experiment, base rates are displayed using sets of cards, while
diagnosticities are displayed using urns that are filled with 100 colored balls. We cannot rule out that this
difference in the way in which information is presented affects the perceived complexity of these decision
parameters and / or their interaction with cognitive noise.
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Earlier experiments. All of the patterns summarized above also hold in our earlier B
experiments, see Appendix E.

5.2.3 Stock market expectations

Appendix Table 9 presents regression analyses that confirm the visual impression from Fig-
ure 3: cognitive uncertainty is strongly predictive of the degree to which historical stock
returns map into probabilistic forecasts. In our earlier B experiments, we find almost iden-
tical patterns for the same measure of stock market expectations. Moreover, we find very
similar patterns of cognitive uncertainty predicting compression towards 50:50 also for in-
flation expectations and beliefs about the income distribution. See Appendix E.

5.3 Cognitive Uncertainty and Distance to the Optimal Decision

Thus far, the analyses documented that average decisions are more compressed and further
away from normative benchmarks when they are associated with higher cognitive uncer-
tainty. In itself, however, this does not imply that cognitively uncertain decisions are located
further away from normative benchmarks, on average. To see this, consider a simple exam-
ple in which the normatively optimal posterior in a belief updating task is 80%. Then, the
average of stated beliefs of 79% and 77% is located further away from the normative bench-
mark than the average of beliefs of 60% and 100%, yet the average absolute distance is still
smaller in the former case.

Our stylized model predics that cognitive noise produces not only stronger compression
of the average, but also that it leads to larger average absolute distances to the normatively
optimal decision. We here test this additional prediction. For belief updating, we use the
Bayesian posterior as the normative benchmark. For survey expectations, we use historical
probabilities. For choice under risk, we assume that subjects’ objective is to maximize ex-
pected value. However, we have verified that very similar results hold when we infer the
“true” utility-maximizing decisions by estimating a population-level CRRA parameter.

Figure 4 summarizes the results. Cognitive uncertainty and absolute distances to the
normative benchmark are significantly correlated (Spearman’sρ = 0.31 in risky choice,ρ =
0.17 in beliefs and ρ = 0.21 in stock market expectations, p < 0.01 for all comparisons).
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Figure 4: Binscatter plots of absolute distance between decisions and “normatively optimal” decisions as a
function of cognitive uncertainty (A experiments). In the left panel (N = 4, 524), the normative benchmark
is assumed to be expected value maximization, in the middle panel (N = 4, 590) it is the Bayesian posterior
and in the right panel (N = 1, 000) it is historical probabilities. Cognitive uncertainty is winsorized at the
90th percentile in each dataset.

5.4 Measurement Error in Cognitive Uncertainty

A prominent concern regarding the measurement of cognitive or preference constructs in ex-
periments is measurement error (Gillen et al., 2019). In our context, measurement error in
the CU elicitation could have two implications. First, CU and certainty equivalents / beliefs
could be subject to a form of correlated measurement error that would potentially create a
mechanical relationship between the occurrence of strictly positive CU and the sensitivity
of decisions to objective probabilities. To illustrate, suppose that all subjects actually exhibit
zero cognitive noise. Further suppose that (i) more inattentive subjects are more likely to
exhibit randommeasurement error in the CU elicitation that leads them to state strictly pos-
itive CU, and (ii) that this same inattention will also lead subjects to state risky decisions
or beliefs that are insensitive to objective probabilities. Under this logic, CU and observed
decisions would be mechanically correlated. If this were the case, however, we would ex-
pect that CU has no predictive power for decisions within the sample of strictly positive
CU. As the right-hand panels of Figure 3 showed, this is counterfactual as the sensitivity of
decisions to delays strongly decreases in CU, even conditional on CU > 0.

A second implication of measurement error in CU could be coefficient attenuation. A
standard remedy against this is to instrument out measurement error through repeated elic-
itations (Gillen et al., 2019). This is feasible in our data because every subject completed at
least two decisions twice. As noted above, cognitive uncertainty is highly correlated across
these repetitions of the same decision problem (r = 0.70 in Risk A and r = 0.68 in Beliefs
A). This enables “Obviously Related Instrumental Variable” (ORIV) analyses, see Appendix
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Tables 7 and 8. Here, we replicate our OLS regressions from Tables 3 and 4, except that we
instrument for the interaction between objective probabilities and CU with the interaction
between objective probabilities and CU from the repeated elicitation. The results are almost
identical. This suggests that measurement error in the CU elicitation is not a major concern.

6 Complexity, Cognitive Noise and Compression Effects

In the conceptual framework in Section 2, we took the magnitude of cognitive noise (cap-
tured by N) as given. More realistically, cognitive noise will be higher if the complexity of
a decision problem is high. As outlined in Section 3, our A experiments manipulated prob-
lem complexity by expressing probabilities as math problems. The B experiments instead
manipulated complexity through compound problems.

Given that there is no widely accepted theory of what is (not) complex, neither of these
two treatments is directly theoretically motivated. However, multiple previous contributions
have hypothesized that compound problems or complex numbers can make decision prob-
lems harder (e.g. Huck and Weizsäcker, 1999; Gillen et al., 2019). Moreover, an added ben-
efit of our cognitive uncertainty measurement is that it allows us to directly test whether
a complexity intervention actually increases cognitive noise. Both experimental manipu-
lations had large effects on cognitive uncertainty. The complex numbers manipulation in-
creased CU by 45% in risky choice and by 48% in belief updating. The compound manipu-
lations lead to an increase in CU by 23% in risky choice and by 33% in belief updating.12

Panels A–D of Figure 5 document that this increase in complexity (and resulting cog-
nitive noise) has a large effect on decisions. As predicted, responses are always substan-
tially more compressed towards an intermediate value than in our baseline experiments.
This is true for both the math manipulation and the compound problems.13 Appendix Ta-
bles 10–13 provide corroborating regression evidence.1⁴ Overall, we interpret these patterns
as evidence that cognitive noise actually causes compression towards an intermediate value,
rather than that it only correlates with it.

We also note that all of these results are inconsistent with a large class of models of
probability weighting and belief updating biases that rest on the assumption of fixed para-

12Recall that we used a different CU measure in the B experiments, such that the magnitudes of the CU
increase should not be directly compared across experiments.

13It is interesting to relate these results to Harbaugh et al. (2010). They identify evidence for probabil-
ity weighting in one elicitation mechanism but not another one, and interpret this by suggesting that the
mechanism that produces probability weighting is “more complex.”

1⁴In experiment Risk B, we also implemented compound lotteries for loss gambles. The results are very
similar, see Appendix E.
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Figure 5: Complexity and decisions. Panel A shows median normalized certainty equivalents separately for
baseline and complex numbers lotteries in the Risk A experiment (N = 3, 000). Panel B shows median
normalized certainty equivalents separately for baseline and compound lotteries in the Risk B experiment
(N = 1,958). Panel C shows median posterior beliefs separately for baseline and complex numbers updating
problems in the Beliefs A experiment (N = 3, 000). Panel D shows median posterior beliefs separately for
baseline and compound updating problems in the Beliefs B experiment (N = 2, 056). Whiskers show standard
error bars. The beliefs figures show bins with more than 30 observations.

metric biases, such as “base rate neglect parameters” or a “probability weighting sensitivity
parameter”. Instead, our results suggest that the complexity of the decision environment
partly determines the level of cognitive noise, which, in turn, drives the magnitude of errors.

7 Estimating the Central Tendency Effect

The framework laid out in Section 2 asserts that the compression patterns documented in
this paper reflect a regression of average behavior to an “intermediate” d, which could either
reflect a fixed default (prior) or the mean random choice. Either interpretation is reminis-
cent of well-established “central tendency effects” in psychological research on judgment
and decision-making. Here, we contribute to this discussion by directly estimating the cen-
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tral tendency effect (d), regardless of whether it reflects a fixed prior or the mean random
choice. We do not have a general theory of what determines people’s priors, though some
research in cognitive psychology suggests that the prior may reflect a decision that makes
sense on average (e.g., Petzschner et al., 2015; Xiang et al., 2021).1⁵

Recall that the average decision in our framework can be expressed as a convex combi-
nation of the expected-utility-maximizing decision and d, with the relative weight λ being
a function of the magnitude of (unobserved) cognitive noise. We proceed by heuristically
approximating λ = max{0; (1− γpCU)}, where γ is a nuisance parameter to be estimated.
We can then estimate the decision rule in (2) as:

ao = max{1− γpCU ; 0}
︸ ︷︷ ︸

λ

a∗(p) +min{γpCU ; 1}
︸ ︷︷ ︸

1−λ

d + ε, (4)

where pCU is observed, γ and d are to be estimated and ε is a disturbance term.1⁶ The
utility-maximizing decision a∗ is assumed to be the Bayesian posterior in belief updating.
For choice under risk, we assume that the utility-maximizing decision reflects CRRA utility,
with utility curvature to be estimated.1⁷

We estimate this equation at the population level using standard non-linear least squares
techniques. This means that we leverage individual-level (in fact, decision-level) variation
in CU but estimate a single average d for the population. For benchmarking purposes, we
also estimate a “restricted model” that excludes cognitive noise, i.e., setting pCU = 0.

Table 5 reports the model estimates for both our A experiments and the earlier B exper-
iments. There are three main takeaways. First, we consistently estimate an “intermediate”
mean of the prior distribution. The estimated cognitive default is very close to 0.5 in the
beliefs experiments and somewhat lower at around 0.4 in choice under risk. The estimates
of the default decision jive well both with the visual impressions from Figure 3 and with the
large body of work on central tendency or compromise effects in psychology and economics.

The second main takeaway from the model estimations is that allowing for a role of

1⁵Some research suggests that people’s priors may be influenced by a 1/N logic, where N is the number of
states (Zhang and Maloney, 2012). To test this idea, we ran additional experiments in which we implemented
a partition manipulation: in the belief updating and choice under risk experiments, we increased the number
of states from two to ten without changing the normatively relevant features of the problem. Under the
assumptions that (i) the model parameter d reflects a fixed prior and (ii) that it is partly influenced by a
1/N logic, such a treatment should decrease observed decisions, and more so for cognitively uncertain people.
Appendix F reports the results of these experiments, which are mixed.

1⁶Note that in this approach, λ (and hence unobserved cognitive noise) varies at the choice level, but the
nuisance parameter γ is fixed at the population level.

1⁷The estimating equation with CRRA utility curvature parameter α is given by ao = max{1 −
γpCU ; 0}p1/α +min{γpCU ; 1}d + ε.
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Table 5: Estimates of central tendency effect across experiments

Risk A Beliefs A Risk B Beliefs B

(1) (2) (3) (4) (5) (6) (7) (8)

Restr. CU Restr. CU Restr. CU Restr. CU

d̂ N/A 0.43 N/A 0.52 N/A 0.40 N/A 0.52

AIC 18958 18477 211 -936 7996 7707 211 -935

Notes. Estimates of different versions of (4). Columns (1), (3), (5) and (7): set
γ = 1 and pCU = 0. All estimated standard errors (computed based on clustering
at the subject level) are smaller than 0.02.

cognitive noise increases model fit substantially relative to the restricted model that does
not include cognitive uncertainty. This can be inferred from the lower values of Akaike’s
Information Criterion.

8 Discussion

This paper has argued that measuring cognitive uncertainty in a simple, fast and costless
manner allows experimental and survey researchers to predict behavior and biases and to
shed light on the decision modes that underlie commonalities in errors across different do-
mains. Instead of recapitulating the paper’s results, we here discuss extensions, limitations
and directions for future research.

Extension: S-shaped response functions. While our main empirical analyses focus on the
observation that people’s beliefs and choices are compressed towards some intermediate
value, it is well-known in the literature that decisions are often non-linear (inverse S-shaped)
in objective probabilities (see Figure 1). As we discuss in detail in Appendix D, our account
of cognitive uncertainty also sheds light on this regularity. The reason is that cognitive
uncertainty is hump-shaped in objective probabilities. For example, it appears to be easier
for people to value a lottery that has a payout probability close to the boundaries. Similarly,
people report lower cognitive uncertainty in belief updating problems that have Bayesian
posteriors close to the boundaries. The model estimations in Appendix D show that these
non-linearities in how cognitive uncertainty depends on objective probabilities can translate
into the canonical S-shaped response functions commonly observed in the literature.
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Extension: Ambiguity attitudes. While in this paper we focus on how cognitive uncer-
tainty sheds light on the pattern that people treat different objective probabilities to some
degree alike, there is also a direct connection to research on ambiguity. The reason is that
recent reviews highlight the concept of “ambiguity-insensitivity,” which asserts that people
are excessively insensitive to changes in the likelihood of ambiguous events (Trautmann
and Van De Kuilen, 2015). In the working paper version of this paper, we document that
measured cognitive uncertainty also strongly predicts the magnitude of ambiguity insensi-
tivity (Enke and Graeber, 2019). Indeed, we find that cognitively uncertain people often
act as though they are ambiguity-seeking when an ambiguous event is very unlikely.

Implications for research linking expectations measures to field behaviors. If stated
expectations are systematically distorted due to the types of compression effects that we
document in this paper, demographic differences in expectations could just reflect hetero-
geneity in cognitive noise rather than true beliefs. Moreover, when researchers estimate
links between expectations and field behaviors, cognitive noise could attenuate these rela-
tionships. In line with this conjecture, Drerup et al. (2017), Giglio et al. (2019) and Yang
(2023) find that the relationship between expectations and investment behavior is con-
siderably more pronounced among people with high confidence in their expectations. We
conjecture that cognitive uncertainty will be predictive of the strength of the relationship be-
tween behaviors and expectations more generally (see also, e.g., Charles et al., 2022; Yang,
2023). Thus, at a minimum, measuring cognitive uncertainty in surveys allows researchers
to conduct heterogeneity analyses regarding the predictability of field behaviors.

Limitations. An obvious limitation of our approach is that we do not have a general theory
of what the prior / cognitive default / mean random choice is. We here work with the idea
that the mean prior reflects the decision they would have taken prior to deliberating about
the problem at hand. Yet, casual introspection suggests that other factors might also shape
people’s initial reactions. For instance, if a choice option is displayed in red font, it might be
visually salient and therefore serve as a cognitive anchor from which people’s deliberation
process adjusts.

Related to this discussion is research on bounded rationality that focuses on the role
of misleading intuitions, as they result from salience, focusing, or memory-based cueing
effects (e.g., Kahneman, 2011; Bordalo et al., 2013, 2017; Kőszegi and Szeidl, 2013; Enke
et al., 2020). While our paper is more concerned with the effects of complexity than with
those of strong intuitions, we conjecture that the (unspecified) cognitive default provides
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a potential link between these two literatures. We speculate that strong intuitions, salient
choice options or associations-based recall shape people’s initial reaction to a choice problem
(the prior / cognitive default), while cognitive uncertainty captures the degree to which
people adjust away from these initial reactions. If true, such a perspective would suggest the
testable prediction that salience, focusing and memory-based cueing effects are particularly
pronounced among people with high cognitive uncertainty.

More closely integrating cognitive noise with attention and memory research is also
relevant because prior work has shown that both probability weighting in risky choice and
probability estimates are influenced by salience and asymmetric recall (e.g., Stewart et al.,
2006; Bordalo et al., 2012, 2021). Similarly, a broad body of work often identifies the
opposite of probability weighting when people decide based on experience rather than
problem descriptions (Hertwig and Erev, 2009). It is not obvious that our approach of
measuring cognitive uncertainty can reconcile these patterns.

A third limitation of our work is that we do not have a theory of which aspects of a
decision actually generate cognitive noise and resulting cognitive uncertainty. As we saw
above, more complex decisions lead to higher cognitive uncertainty. Prior work has shown
that cognitive noise is also a function of time pressure, experience and prior beliefs (Polania
et al., 2019; Prat-Carrabin and Woodford, 2021; Frydman and Jin, 2021). Yet, a general
theory of what makes a task (not) complex is not available. Other aspects that generate cog-
nitive uncertainty may pertain to the decision-maker: the availability of cognitive resources
or the amount of experience. Future research could helpfully shed light on this.

Open questions and potential applications. We conjecture that the measurement of cog-
nitive uncertainty could shed light on behavior in multiple other domains of economic
decision-making. Most fundamentally, people likely don’t just have cognitive uncertainty
in choosing between lotteries or in updating their beliefs, but also in other domains. For
instance, in Enke et al. (2022), we study how cognitive uncertainty helps to shed light on
“anomalies” in intertemporal choice. Yet, we speculate that there may be many more ap-
plications in which a measurement of cognitive uncertainty could shed light on biases and
anomalies that have a “compression” flavor. For example, in the widely-studied newsven-
dor game that is of relevance to researchers in economics, management and operations
research, people generally succumb to a pull-to-the-center bias (Schweitzer and Cachon,
2000). Similarly, laboratory experiments on effort choice often find that the elasticity of la-
bor supply with respect to piece rates is very low; we again speculate that this insensitivity
/ compression effect could be explained by measuring cognitive uncertainty.
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Another open question relates to the link between objective cognitive noise and cogni-
tive uncertainty. In the decision contexts that we study in this paper, people’s awareness
of their own cognitive noise is at least partly accurate. Yet, in other decision domains, peo-
ple’s meta-cognition may be less well-calibrated, as in Enke et al. (2021). This immediately
raises the question of when people’s cognitive uncertainty is (not) reflective of actual noise.

Finally, another open question concerns the choice implications of cognitive noise. In this
paper, we have highlighted the empirical regularity that cognitive uncertainty is associated
with an attenuated relationship between decisions and problem parameters. In other con-
texts, cognitive uncertainty may predict a form of “caution” (Cerreia-Vioglio et al., 2015) or
“complexity aversion,” according to which people shy away from choice options regarding
which they have high cognitive uncertainty. Future research could helpfully shed light on
when compression effects or caution dominate.
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ONLINE APPENDIX

A Theoretical Framework

A.1 Baseline Model

Below we discuss the main behavioral predictions of a Bayesian cognitive noise model as
outlined in Section 2. Suppose the DM does not know their ex-ante utility-maximizing
action, a∗, but has access to a mental simulation, S, which is an unbiased cognitive signal
of a∗,

S ∼
1
N

Bin(N , a∗), (5)

such that 0≤ S ≤ 1. The parameter N controls the precision of the mental simulation.
The DM holds a prior about his subjective utility-maximizing action, a∗. We assume that

this prior can be represented by a Beta distribution, a∗ ∼ Beta(nd , n(1− d)). Here, d is
the prior mean and carries the interpretation of a “cognitive default” action that the DM
would take before deliberating about the problem. The parameter n, on the other hand,
reflects the DM’s confidence in (or precision of) his prior.1⁸ Given the fact she has a prior,
the cognitive signal from the DM’s perspective is seen as:

S ∼
1
N

Bin(N , a∗). (6)

The subjective likelihood of choosing the true utility-maximizing action based on a ran-
domly drawn cognitive signal {S = s} can then be represented by a binomial distribution:

L (a∗|S = s) = P(S = s|a∗, N) =
�

N
sN

�

(a∗)sN (1− a∗)(1−s)N . (7)

A Bayesian DM accounts for the noisiness of his mental simulation by implicitly forming a
posterior assessment of the utility-maximizing action. Given a Beta-distributed prior and
a Binomial signal, this posterior belief, a∗|S = s, is also Beta-distributed.1⁹ We assume the

1⁸Note that n= a+ b is a re-parameterization of the shape parameters a and b of the Beta distribution. n
is inversely related to the variance of the prior, σ2

A =
d·(1−d)

1+n .
1⁹Specifically, a∗|S = s ∼ Beta(sN + nd , N(1− s) + n(1− d)).
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DM’s decision is given by his posterior mean:2⁰

ao = E[a∗|S = s] = λs+ (1−λ)d with λ= N/(n+ N). (8)

Crucially, a more precise mental simulation (higher N) has a direct effect on the weighting
factor λ which implies a lower weight on the cognitive default action. In the following sub-
section, we will thus focus on deriving behavioral predictions for changes in λ. In subsection
A.3 we characterize cognitive uncertainty in the context of this model.

For the purposes of the belief updating experiments it will be helpful to define the
following terms:

b := The prior / base rate (9)

h := The signal diagnosticity (10)

d := The cognitive default decision (11)

n := The number of balls in the sample (12)

k := The number of red balls in the sample (13)

These quantities allows us to derive / define the following quantities:

a∗ :=
hk(1− h)n−k b

hk(1− h)n−k b+ (1− h)khn−k(1− b))
(Bayesian Posterior)

a := λa∗ + (1−λ)d The mean observed action

o :=
b

1− b
The prior odds

LR :=
hk(1− h)n−k

(1− h)khn−k
=
�

h
1− h

�2k−n

The likelihood ratio

lo :=
a

1− a
Log[Subjective posterior odds]

2⁰We focus on the mean for tractability. This is precisely the optimal response in our belief formation
experiments, given the quadratic loss function implied by our scoring rule. However, in both our risk and
beliefs experiments, even people’s subjectively expected reward from a given response might in principle also
depend on risk preferences. Put differently, subjects may be risk-averse vis-à-vis their subjective distribution
about the optimal action. If one makes this assumption, the optimal response is ambiguous in both kinds
of experiments. Whichever view one takes, in the present theoretical setup, the approximation error from
assuming the subject playing the subjective mean is likely small. For instance, the mean of a Beta(a,b) variable
is a/(a+ b), whereas the mode is (a− 1)/(a+ b− 2), and the median lies between the two.
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A.2 Proofs of Predictions in Main Text

We restate the predictions from the main text more formally here and provide proofs.

Prediction 1 (Cognitive noise and compression effects).

(a) In risky choice, cognitive noise is correlated with probability weighting. Specifically, the
mean error, e := E[ao − p], when faced with the same situation satisfies: ∂ e/∂ λ < 0

for p < u(d) and ∂ e/∂ λ > 0 for p > u(d).

(b) i. In stated beliefs, cognitive noise is correlated with overestimation of small and under-
estimation of large probabilities. Specifically, the mean error, e := E[ao− p], when faced
with the same situation satisfies: ∂ e/∂ λ < 0 for p < d and ∂ e/∂ λ > 0 for p > d.

ii. In Grether decompositions, when taking the default position to be in the interior
d ∈ (0,1), cognitive noise is correlated with base rate insensitivity and conservatism
(likelihood ratio insensitivity).

Proof.

(a) We consider the expression for e, that is, E[ao − p] and compute the derivative:

∂ e
∂ λ
= a∗ − d (14)

hence, we see that ∂ e
∂ λ > 0 when:

a∗ > d (15)

p > u(d) (16)

The result immediately follows.

(b) i. This follows given the result above and noting that a∗ = p, that is, the utility
maximizing choice is the Bayesian posterior, by mutatis mutandis.

ii. In a Grether regression framework, our prediction concerns how the derivative of
the log posterior odds with respect to the log prior odds depends on λ. Base rate
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insensitivity that increases in cognitive noise would mean that:

∂ 2lo
∂ λ∂ ln |o|

≥ 0 (17)

and we begin by deriving this inequality. Since b is not a function of λ, the desired
derivative may be expanded as:

∂ 2lo
∂ λ∂ ln |o|

=
∂ 2lo
∂ λ∂ b

d b
d ln |o|

(18)

Noting that:

b =
eln |o|

1+ eln |o|
(19)

so that we find:

∂ b
∂ ln |o|

=
eln |o|

(1+ eln |o|)2
(20)

= b(1− b)≥ 0 (21)

Accordingly, our claim will be proven if:

∂ 2lo
∂ λ∂ b

≥ 0 (22)

For simplicity, we define the following quantities:

e1 = b2(1− h)2nh4k(λ2(1− d)2 + d(1− d)) (23)

e2 = 2((1− h)h)2k+n b(1− b)(1−λ2)d(1− d) (24)

e3 = (1− h)4kh2n(1− b)2d(1− d(1−λ2)) (25)

and it may be seen that for 0 ≤ k ≤ n and b, h,λ, d ∈ (0,1) that the quantities above
are positive.

We then proceed to directly compute the value of this mixed partial and after com-
bining and canceling out terms find it to be:

∂ 2lo
∂ λ∂ b

=
((1− h)h)2k+n(e1 + e2 + e3)

x2 y2
(26)
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where we have

x = (1− h)2khn(1+ d(1−λ)(1− b)− (1− d)(1−λ)(1− h)nh2k b) (27)

y = (1− h)nh2kλb+ d(λ− 1)((1− h)2khn(b− 1)− (1− h)nh2k b) (28)

The denominator is the product of two squares and is accordingly non-negative. Since
the terms (1− h)h, e1, e2, e3 > 0 given our assumptions, we have accordingly shown
that base rate insensitivity decreases in signal precision, λ. In other words, base rate
insensitivity increases in cognitive noise, (1−λ).

We now consider likelihood ratio insensitivity. If we define the log of the subject’s
log posterior odds as lo, then likelihood insensitivity that increases in cognitive noise
would mean that:

∂ 2lo
∂ λ∂ ln |LR|

≥ 0 (29)

and we again begin by deriving this inequality. Since h is not a function of λ, the
desired derivative may be expanded as:

∂ 2lo
∂ λ∂ ln |LR|

=
∂ 2lo
∂ λ∂ h

dh
d ln |LR|

(30)

Now, the sign of d g/d ln |LR| is the same21 as that of d|LR|/dh and we see that the
latter may computed to be:

d|LR|
dh

= (2k− n)

�

h2k−n−1

(1− h)2k−n+1

�

(31)

hence, its sign depends on that of 2k− n. Accordingly, our claim will be proven if:

sgn
�

∂ 2lo
∂ λ∂ h

�

= sgn(2k− n) (32)

We may directly compute the value of this mixed partial and after combining and
canceling out terms find it to be:

∂ 2lo
∂ λ∂ h

=
(2k− n)((1− h)h)2k+n−1 b(1− b)(e1 + e2 + e3)

x2 y2
(33)

21Recall, that d ln |LR|
dh = 1

|LR|
d|LR|

dh .
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Once again the denominator is the product of two squares and is accordingly non-
negative. Since the terms (1 − h)h, e1, e2, e3 > 0 given our assumptions, we have ac-
cordingly proven our claim.

Prediction 2. The squared difference between the DM’s decisions and his utility-maximizing
decision decreases in signal precision on average when the signal is more informative than the
prior. Stated formally, we have that the mean squared error

E[(ao − a∗)2] (34)

satisfies:
∂E[(ao − a∗)2]/∂ N < 0 (35)

when N > n.

Proof. We recall that for a given task:

ao = λS + (1−λ)d

where NS ∼ Bin(N , a∗) and λ= N/(n+ N). Accordingly, we may compute:

E[(ao − a∗)2] =
d2n2 − 2dn2a∗ + a∗(N + n2a∗ − Na∗)

(n+ N)2
(36)

taking the derivative we find that:

∂E[(ao − a∗)2]
∂ N

=
(N − n)a∗(a∗ − 1)− 2n2(a∗ − d)2

(n+ N)3
(37)

which is negative since N > n and a∗ < 1 thereby proving the claim.

A.3 Cognitive Uncertainty and Cognitive Noise

As laid out in Section 2, the DM subjectively perceives his ex-ante utility-maximizing de-
cision as a distribution conditional on his noisy signal. This means: while the agent is as-
sumed to choose ao = E[AS=s], the underlying perceived posterior distribution of the utility-

47



maximizing decision is Beta-distributed:

AS=s ∼ Beta



sN + nd
︸ ︷︷ ︸

≡a

, N(1− s) + n(1− d)
︸ ︷︷ ︸

≡b



 (38)

where N is the signal precision. Now, let us restate our definition of cognitive uncertainty,

pCU := P(|AS=s −E[AS=s]|> κ), (39)

for fixed constant κ. The objective of this subsection is to establish that increases in sig-
nal precision decrease cognitive uncertainty. Below, we develop two sets of results about
this relationship. First, Corollary 1 provides a limit argument showing that any desired de-
crease in cognitive uncertainty can be achieved by an increase in signal precision. Second,
to shed light on the case with low signal precision, Theorem 1 shows that cognitive uncer-
tainty decreases with signal precision when using the Gaussian approximation of the Beta
distribution.

To begin, we prove:

Proposition 1. ∀κ > 0,∀ε > 0,∃N ∗ ∈ N such that pCU < ε for N > N ∗.

Proof. By Chebyshev’s inequality we see that for any positive number, κ:

pCU <
Var(AS=s)
κ2

(40)

and, since AS=s ∼ Beta(Ns+ nd, N(1− s) + n(1− d)) its variance is found to be:

Var(AS=s) =
(Ns+ nd)(N(1− s) + n(1− d)),

(n+ N)2(n+ N + 1)
= O(N−1) (41)

Accordingly, we find
lim

N→∞
pCU = 0, (42)

which in turn yields the proposition.

This proposition yields the following corollary:

Corollary 1. Holding the signal value constant {S = s} and given a base level of signal precision,
N , there exists a constant ∆n such that a desired decrease in cognitive uncertainty may be
accomplished by increasing the signal precision by more than ∆n.
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Formally, given a base signal precision, N , and a desired decrease in cognitive uncertainty,
δ ∈ (0, pCU), there exists a quantity, ∆n ∈ N, such that:

N ′> N +∆n→ pCU − pCU ′> δ (43)

with N ′ and pCU ′ being the new signal precision and cognitive uncertainty respectively.

Proof. Given a signal precision N and cognitive uncertainty, pCU , we may apply the propo-
sition to ε = pCU −δ. We then find that ∆n= N − N . The result follows.

In essence, this corollary formally states the intuition that any desired decrease in cog-
nitive uncertainty may be accomplished through an increase in signal precision.

In general, though, we will employ the standard Gaussian approximation,22 which pro-
vides a good approximation when α= β even for smaller values of α,β . Under the Gaussian
approximation we may illustrate our claim concerning the decrease of pCU with respect to
signal precision as follows:

Theorem 1. Holding the signal {S = s} constant, an increase in signal precision causes a
decrease in cognitive uncertainty in the Gaussian approximation:

∆pCU

∆N
< 0 (44)

Proof. This trivially follows from the definition of pCU , the fact that κ is constant and the
fact that the variance decreases.

A.4 Noisy Coding of Probabilities

We show that similar predictions to those presented in Section 2 can be generated by an
alternative model of noisy cognition proposed by Khaw et al. (2021). Khaw et al. (2021)
examine the effect of cognitive noise in choice under risk. Their model differs from ours
in three main ways. First, instead of modeling noisy cognition of the rational action, they
propose noisy coding of individual problem parameters. We here focus on noisy coding of
payoff probabilities, as considered in Appendix G of Khaw et al. (2021). Second, they as-
sume that individuals subjectively represent probabilities in log-odds form of in line with

22This is a commonly used approximation that follows from the fact that X/(X +Y ) has a Beta distribution
if X , Y are Gamma(λ,1) random variables; that the Gamma distribution is asymptotically normal and an
application of the Delta method.
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evidence from cognitive psychology (e.g., Zhang and Maloney, 2012), which maps proba-
bilities from the [0, 1] interval onto an unbounded log-odds space. Third, they work with
normal distributions, unlike our beta-binomial setup. We here apply their model to our
setup and develop similar predictions.

The decision maker is asked to indicate his certainty equivalent for a lottery that pays $1
with probability p and nothing otherwise, but only conceives p with noise. More precisely,
we assume that he believes the log-odds z(p) = log p

1−p follow a prior distribution:

z(p)∼ N(µz(p),σ
2
p). (45)

He then receives an unbiased signal for the log-odds following:

S ∼ N(z(p),ν2
p) (46)

After Bayesian updating, the agent’s posterior for log-odds will be:

z(p) | S ∼ N(m(S), σ̄2)

where m(S) := µz(p) + βp

�

S −µz(p)

�

, βp :=
σ2

p

σ2
p + ν2

p

and σ̄2 :=
σ2

pν
2
p

σ2
p + ν2

p

.
(47)

Tomodel the utility-maximizing decision, we follow Khaw et al. (2021) in assuming that
utility is linear, at least locally, so that the rational action for a known p becomes a∗(p) = p.
Conditional on a draw of the signal S, the decision maker’s optimal certainty equivalent is
the expected value of p given S:

ao(S) = E [p | S] = E

�

ez(p)

1+ ez(p)

�

�

�

�

S

�

, (48)

where the integrand is simply the inverse of the log-odds function. An inspection of the
posterior distribution of z(p) shows that ao(S) can be rewritten as the unconditional expec-
tation:

ao(S) = E

�

em(S)+σ̄ε

1+ em(S)+σ̄ε

�

with ε∼ N(0,1). (49)

Note that ao(S) is a random variable as it depends on realizations of the signal S.
The value at which the DM is equally likely to accept or refuse the lottery corresponds to

the median of the certainty equivalent. As ao(S) is an increasing function of S, this median
will be given by its value at the median value of S, which is the prior mean µz(p). Writing

50



out the median certainty equivalent w(p),

w(p) :=Median[ao(S)] = ao(z(p)) = E [p | S = z(p)] = E

�

em(z(p))+σ̄ε

1+ em(z(p))+σ̄ε

�

(50)

Next, we state and prove a number of predictions that are close analogues of the pre-
dictions about risky choice problems presented in our main model. Our main predictions in
Section 2 apply globally for any level of cognitive noise. Because a similar level of generality
is intractable here, we proceed by examining the effect of moving from a situation without
cognitive noise to one with cognitive nose.

Prediction 1’ (Cognitive noise about probabilities and compression effects).
In risky choice, the presence of cognitive noise is correlated with probability weighting. Specifi-
cally, with cognitive noise on probabilities, the median error e :=Median

�

ao(S)−p
�

is positive
for p < p∗ and negative for p∗ < p, for some p∗.

Proof. As in Appendix G of Khaw et al. (2021), one can show that w(p) is continuous, strictly
increasing, that w(p) → 0 as p → 0, that w(p) → 1 as p → 1 and that w′(p) → +∞ as
p → 0 or p → 1. It thus exhibits the typical “inverse-S” shape and intersects the 45◦ line
at a unique fixed point w(p∗) = p∗ over (0,1). This, in turn, shows that the median error
e =Median[ao(S)− p] = w(p)− p is positive below p∗ and negative above p∗: agents with
cognitive noise exhibit probability weighting, while agents without cognitive noise do not.

Prediction 2’ (Cognitive noise and error variance).
The presence of cognitive noise is associated with larger squared differences between the DM’s
decisions and his utility-maximizing decision than the absence of cognitive noise.

Proof. While ao = a∗(p) holds absent cognitive noise, in the presence of cognitive noise de-
cisions exhibit a strictly positive mean square error which notably depends on the posterior
variance σ̄2:

E
�

(ao(S)− a∗(p))2
�

= E

�

�

em(S)+σ̄ε

1+ em(S)+σ̄ε
−

ez(p)

1+ ez(p)

�2�

> 0 (51)

Although in a model with noisy perception of probabilities there is, strictly speaking, no
cognitive default d in the action space, the rational action corresponding to the mean of
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the prior, which we call probabilistic default and write dp := a∗(µz(p)) =
eµz(p)

1+eµz (p) , plays an
analogous role.
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B Additional Figures
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Figure 6: Link between cognitive uncertainty and across-task variability in decisions in Risk A (left panel,
N = 1,000) and Beliefs A (right panel, N = 1, 000). The y-axis captures the average absolute difference
between the decisions that a subject took across two implementations of the exact same problem configuration.
Cognitive uncertainty is winsorized at the 90th percentile for ease of readability.
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C Additional Tables

Table 6: Cognitive uncertainty in belief updating as a function of sample size

Dependent variable:
Cognitive uncertainty

(1) (2) (3) (4)

Sample size (Total number of drawn balls) 0.013∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.015∗∗∗
(0.00) (0.00) (0.00) (0.00)

Absolute difference between number of red and blue balls -0.017∗∗∗ -0.016∗∗
(0.01) (0.01)

Distance b/w Bayesian posterior and 50 -0.0032∗∗∗ -0.0032∗∗∗
(0.00) (0.00)

Constant 0.34∗∗∗ 0.34∗∗∗ 0.41∗∗∗ 0.42∗∗∗
(0.01) (0.03) (0.01) (0.03)

Demographic controls No Yes No Yes

Observations 4602 4602 4602 4602
R2 0.00 0.03 0.04 0.06

Notes. Demographic controls include age, gender, college education and performance on the Raven matrices
test. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10, ∗∗
p < 0.05, ∗∗∗ p < 0.01.
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Table 7: ORIV regressions for Risk experiment

Dependent variable:
Normalized certainty equivalent

OLS IV

(1) (2) (3) (4)

Payout probability 0.74∗∗∗ 0.74∗∗∗ 0.72∗∗∗ 0.73∗∗∗
(0.04) (0.04) (0.07) (0.07)

Payout probability × Cognitive uncertainty -0.87∗∗∗ -0.87∗∗∗ -0.80∗∗∗ -0.84∗∗∗
(0.11) (0.11) (0.28) (0.29)

Cognitive Uncertainty 35.4∗∗∗ 33.0∗∗∗ 31.8∗∗ 31.8∗∗
(7.83) (7.72) (14.07) (14.05)

Constant 18.4∗∗∗ 27.7∗∗∗ 19.4∗∗∗ 28.1∗∗∗
(2.72) (4.90) (4.20) (6.07)

Demographic controls No Yes No Yes

Observations 2040 2040 2040 2040

Notes. Demographic controls include age, gender, college education and performance
on the Raven matrices test. OLS estimates, robust standard errors (in parentheses) are
clustered at the subject level. In the IV estimates, the interaction between the payout
probability and cognitive uncertainty is instrumented for by the interaction of the pay-
out probability and cognitive uncertainty in a repeated elicitation of the same lottery
valuation problem. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 8: ORIV regressions for Beliefs experiment

Dependent variable:
Posterior belief

OLS IV

(1) (2) (3) (4)

Bayesian posterior 0.72∗∗∗ 0.72∗∗∗ 0.74∗∗∗ 0.74∗∗∗
(0.03) (0.03) (0.03) (0.03)

Bayesian posterior × Cognitive uncertainty -0.45∗∗∗ -0.45∗∗∗ -0.51∗∗∗ -0.52∗∗∗
(0.07) (0.07) (0.11) (0.10)

Cognitive Uncertainty 12.7∗∗∗ 13.1∗∗∗ 15.7∗∗∗ 16.0∗∗∗
(4.21) (4.20) (5.24) (5.18)

Constant 19.3∗∗∗ 19.6∗∗∗ 18.4∗∗∗ 18.9∗∗∗
(1.85) (2.75) (2.07) (2.87)

Demographic controls No Yes No Yes

Observations 3060 3060 3050 3050

Notes. Demographic controls include age, gender, college education and performance
on the Raven matrices test. OLS estimates, robust standard errors (in parentheses)
are clustered at the subject level. In the IV estimates, the interaction between the
Bayesian posterior and cognitive uncertainty is instrumented for by the interaction of
the Bayesian posterior and cognitive uncertainty in a repeated elicitation of the same
belief updating problem. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 9: Cognitive uncertainty and likelihood insensitivity in economic forecasts

Dependent variable:
Posterior belief Ln [Posterior odds]

(1) (2) (3) (4)

Historical probability 0.64∗∗∗ 0.63∗∗∗
(0.04) (0.04)

Historical probability × Cognitive uncertainty -0.49∗∗∗ -0.47∗∗∗
(0.07) (0.07)

Cognitive Uncertainty 9.51∗∗ 10.3∗∗ -0.76∗∗∗ -0.67∗∗∗
(3.90) (4.06) (0.19) (0.20)

Ln [Historical odds] 0.55∗∗∗ 0.55∗∗∗
(0.04) (0.04)

Ln [Historical odds] × Cognitive uncertainty -0.47∗∗∗ -0.47∗∗∗
(0.06) (0.06)

Constant 17.5∗∗∗ 6.18 -0.076 -0.77∗∗∗
(2.57) (4.15) (0.12) (0.27)

Demographic controls No Yes No Yes

Observations 1000 1000 1000 1000
R2 0.34 0.35 0.30 0.31

Notes. Demographic controls include age, gender, college education and performance on
the Raven matrices test. OLS estimates, robust standard errors (in parentheses) are clus-
tered at the subject level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 10: Complex numbers manipulation in Risk A

Dependent variable:
Normalized certainty equivalent

(1) (2) (3) (4)

Payout probability 0.62∗∗∗ 0.62∗∗∗ 0.71∗∗∗ 0.70∗∗∗
(0.02) (0.02) (0.03) (0.03)

Payout probability × 1 if Complex numbers -0.23∗∗∗ -0.23∗∗∗ -0.16∗∗∗ -0.16∗∗∗
(0.04) (0.04) (0.04) (0.04)

1 if Complex numbers 6.83∗∗ 6.80∗∗ 5.26∗ 5.44∗
(2.80) (2.75) (2.85) (2.80)

Payout probability × Cognitive uncertainty -0.39∗∗∗ -0.39∗∗∗
(0.06) (0.06)

Cognitive Uncertainty 7.68∗ 6.02
(4.55) (4.53)

Constant 24.9∗∗∗ 32.4∗∗∗ 23.4∗∗∗ 32.1∗∗∗
(1.90) (4.49) (2.47) (4.62)

Demographic controls No Yes No Yes

Observations 3000 3000 3000 3000
R2 0.37 0.38 0.40 0.41

Notes. Demographic controls include age, gender, college education and performance
on the Raven matrices test. OLS estimates, robust standard errors (in parentheses) are
clustered at the subject level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 11: Compound lottery manipulation in Risk B

Dependent variable:
Normalized certainty equivalent

(1) (2) (3) (4)

Probability of payout 0.62∗∗∗ 0.62∗∗∗ 0.67∗∗∗ 0.66∗∗∗
(0.02) (0.02) (0.02) (0.02)

Payout probability × 1 if compound lottery -0.30∗∗∗ -0.29∗∗∗ -0.27∗∗∗ -0.27∗∗∗
(0.03) (0.03) (0.03) (0.03)

1 if compound 12.3∗∗∗ 12.3∗∗∗ 11.7∗∗∗ 11.6∗∗∗
(1.89) (1.90) (1.91) (1.91)

Probability of payout × Cognitive uncertainty -0.30∗∗∗ -0.29∗∗∗
(0.06) (0.06)

Cognitive uncertainty 8.07∗∗ 7.53∗
(3.95) (3.96)

Demographic controls No Yes No Yes

Observations 1918 1918 1918 1918
R2 0.44 0.45 0.45 0.46

Notes. Demographic controls include age, gender, college education and performance
on the Raven matrices test. OLS estimates, robust standard errors (in parentheses) are
clustered at the subject level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

58



Table 12: Complex numbers manipulations in Beliefs A

Dependent variable:
Posterior belief Ln [Posterior odds]

(1) (2) (3) (4) (5) (6)

Bayesian posterior 0.60∗∗∗ 0.70∗∗∗
(0.02) (0.03)

Bayesian posterior × 1 if Complex numbers -0.27∗∗∗ -0.20∗∗∗
(0.04) (0.04)

1 if Complex numbers 9.57∗∗∗ 7.99∗∗∗ -0.23∗∗∗ -0.14∗ -0.23∗∗∗ -0.15∗
(2.23) (2.34) (0.08) (0.08) (0.07) (0.08)

Bayesian posterior × Cognitive uncertainty -0.37∗∗∗
(0.07)

Cognitive Uncertainty 6.89∗ -0.60∗∗∗ -0.59∗∗∗
(3.81) (0.16) (0.15)

Ln [Bayesian odds] 0.47∗∗∗ 0.55∗∗∗
(0.03) (0.03)

Ln [Bayesian odds] × 1 if Complex numbers -0.21∗∗∗ -0.13∗∗∗
(0.04) (0.04)

Ln [Bayesian odds] × Cognitive uncertainty -0.32∗∗∗
(0.07)

Log[Prior Odds] 0.62∗∗∗ 0.73∗∗∗
(0.04) (0.05)

Ln [Prior odds] × 1 if Complex numbers -0.26∗∗∗ -0.15∗∗
(0.05) (0.06)

Log[Likelihood Ratio] 0.31∗∗∗ 0.32∗∗∗
(0.03) (0.04)

Ln [Likelihood ratio] × 1 if Complex numbers -0.14∗∗∗ -0.12∗∗∗
(0.04) (0.04)

Ln [Prior odds] × Cognitive uncertainty -0.48∗∗∗
(0.09)

Ln [Likelihood ratio] × Cognitive uncertainty -0.082
(0.09)

Constant 22.4∗∗∗ 18.2∗∗∗ 0.10∗ 0.22 0.11∗∗ 0.23
(1.61) (3.48) (0.05) (0.19) (0.05) (0.18)

Demographic controls No Yes No Yes No Yes

Observations 3018 3018 3018 3018 3018 3018
R2 0.37 0.40 0.33 0.36 0.37 0.40

Notes. Demographic controls include age, gender, college education and performance on the Raven matrices
test. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10, ∗∗
p < 0.05, ∗∗∗ p < 0.01.
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Table 13: Compound diagnosticity manipulation in Beliefs B

Dependent variable:
Posterior belief Ln [Posterior odds]

(1) (2) (3) (4) (5) (6)

Bayesian posterior 0.72∗∗∗ 0.80∗∗∗
(0.02) (0.02)

Bayesian posterior × 1 if Compound Lottery -0.51∗∗∗ -0.47∗∗∗
(0.03) (0.03)

1 if Compound Lottery 26.4∗∗∗ 25.4∗∗∗ 0.0051 0.033 0.0058 0.034
(1.75) (1.77) (0.05) (0.05) (0.05) (0.05)

Bayesian posterior × Cognitive uncertainty -0.28∗∗∗
(0.05)

Cognitive uncertainty 10.5∗∗∗ -0.14 -0.14
(3.05) (0.09) (0.09)

Log[Posterior Odds] 0.43∗∗∗ 0.48∗∗∗
(0.02) (0.02)

Ln [Bayesian odds] × 1 if Compound Lottery -0.26∗∗∗ -0.24∗∗∗
(0.02) (0.02)

Ln [Bayesian odds] × Cognitive uncertainty -0.20∗∗∗
(0.04)

Log [Likelihood ratio] 0.45∗∗∗ 0.50∗∗∗
(0.02) (0.02)

Log [Likelihood ratio] × 1 if Compound Lottery -0.28∗∗∗ -0.25∗∗∗
(0.02) (0.02)

Log [Likelihood ratio] × Cognitive uncertainty -0.21∗∗∗
(0.04)

Constant 15.0∗∗∗ 16.0∗∗∗ 0.052∗ 0.25∗∗ 0.051∗ 0.25∗∗
(0.95) (2.66) (0.03) (0.12) (0.03) (0.12)

Demographic controls No Yes No Yes No Yes

Observations 1947 1947 1890 1890 1890 1890
R2 0.60 0.61 0.52 0.53 0.53 0.54

Notes. Demographic controls include age, gender, college education and performance on the Raven matrices
test. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. ∗ p < 0.10, ∗∗
p < 0.05, ∗∗∗ p < 0.01.
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D On Inverse S-Shapes

The objective of this section is to shed light on the pronounced non-linearities (inverse S-
shapes) in the response patterns established in the empirical literatures that we built on.
After all, the neo-additive function that we derived in Section 2 posits that decisions are a
linear function of objective probabilities. While these linear representations are popular due
to their simplicity, they have the drawback that they do not capture the canonical inverse
S-shaped response patterns summarized in Figure 1.

In particular, recall that the estimating equation for our model estimates in eq. (4) linear
in p (when a∗(p) is linear):

ao = max{1− γpCU ; 0}a∗(p) +min{γpCU ; 1}d + ε, (52)

However, a crucial observation is that, empirically, cognitive uncertainty, pCU , is not constant
across problems with varying objective probability, p. The left-hand panels of Figure 7 show
the empirical relationship between measured cognitive uncertainty and objective probabil-
ities in our main experiments. In the top left panel, the x-axis shows the objective payout
probability of a gamble. In the bottom left panel, the x-axis denotes the Bayesian posterior
in belief updating tasks. Across domains, cognitive uncertainty exhibits a pronounced hump
shape: our experimental participants tell us that they find it easier to think about lotteries
with extreme payout probabilities, or about belief formation tasks that have extreme so-
lutions. Intuitively, such higher cognitive noise at intermediate probabilities may generate
the well-known empirical pattern that decisions are less sensitive to variation in objective
probabilities over the intermediate probability range.

To investigate whether these non-linearities could generate an inverse S-shaped deci-
sion function, we return to our model estimations. In this regard, it should be pointed out
that the optimal decision in (52) only follows from the assumptions stated in Section 2
and Appendix A if the magnitude of cognitive noise does not depend on p. When cogni-
tive noise depends on p, the optimal decision need not be linear under the distributional
assumptions that we use. However, as Khaw et al. (2021) show, inverse-S shapes are read-
ily accommodated by cognitive noise models under alternative distributional assumptions.
Thus, we heuristically use the linear equation (52) in an ad hoc fashion also when we study
the implications of a dependence of CU on p.

To reduce the role of attenuating measurement error in the cognitive uncertainty mea-
surement, we re-estimate equation (4) by replacing each participant’s stated CU for a given
decision problem with the average CU for a given objective probability p. For example, in
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A1 Choice under risk: Cognitive uncertainty
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A2 Belief formation: Cognitive uncertainty
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B2 Belief formation: Stated posteriors

0

20

40

60

80

100

Su
bj

ec
tiv

e 
Po

st
er

io
r 

Be
lie

f

0 20 40 60 80 100
Bayesian Posterior

Subject Data
Model Fit

Figure 7: Left panels: median cognitive uncertainty as a function of probabilities. Right panels: fitted values of
estimates of eq. (4), where for each decision problem a subject is assigned the across-subject average CU for
this problem. Figure B2 displays bins with 30 or more observations. (Risk: N = 4, 524, Beliefs: N = 4,590)

choice under risk, we compute the average level of cognitive uncertainty for each payout
probability, and then estimate the model based on these average levels of CU. This is jus-
tified for the purposes of the present exercise because here our focus is precisely on the
variation in cognitive uncertainty across objective probabilities rather than across subjects.

The right-hand panels of Figure 7 show the fit of these model estimates. We see that the
amended reduced-form model accounts for the non-linearity in decisions and attributes it
partly to the hump-shaped relationship between cognitive uncertainty and objective prob-
abilities.
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E Details on B Experiments

We here briefly summarize the “B” experiments that formed the core of our earlier NBER
working paper with the same title (see Table 1). For more details please refer to Enke and
Graeber (2019).

E.1 Decision Tasks

Choice under risk. In experiment Risk B, we followed a large set of previous works and
implemented multiple price lists that elicit certainty equivalents for lotteries (see, e.g. Tver-
sky and Kahneman, 1992; Bruhin et al., 2010; Bernheim and Sprenger, 2019). Each subject
completed a total of six price lists. On the left-hand side of the decision screen, a simple lot-
tery was shown that paid $y with probability p and nothing otherwise. On the right-hand
side, a safe payment $z was offered that increased by $1 for each row that one proceeds
down the list. As in Bruhin et al. (2010) and Bernheim and Sprenger (2019), the end points
of the list were given by z = 0 and z = y .

Throughout, we did not allow for multiple switching points. This facilitates a simpler
elicitation of cognitive uncertainty. To enforce unique switching points, we implemented
an auto-completion mode: if a subject chose Option A in a given row, the computer imple-
mented Option A also for all rows above this row. Likewise, if a subject chose Option B
in a given row, the computer instantaneously ticked Option B in all lower rows. However,
participants could always revise their decision and the auto-completion before moving on.

The parameters y and p were drawn uniformly randomly and independently from the
sets y ∈ {15, 20,25} and p ∈ {5,10, 25,50, 75,90, 95}. We implemented both gain and loss
gambles, where the loss amounts are the mirror images of y . In the case of loss gambles,
the lowest safe payment was given by z = −$y and the highest one by z = $0. In loss
choice lists, subjects received a monetary endowment of $y from which potential losses
were deducted. Out of the six choice lists that each subject completed, three concerned loss
gambles and three gain gambles. We presented either all loss gambles or all gain gambles
first, in randomized order.

Finally, with probability 1/3, a choice list was presented in a compound lottery format,
as described in the main text.

Belief updating. The procedures in Beliefs Bwere essentially the same as in Beliefs A, with
slight changes in the experimental instructions used.
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Survey expectations. As in the main experiments, we elicited expectations about the 12-
months return of the S&P 500. In addition, we also measured inflation expectations:

[Explanation of inflation rates.] We randomly picked a year X between 1980
and 2018. Imagine that, at the beginning of year X, the set of products that is used
to compute the inflation rate cost $100. What do you think is the probability that,
at the end of that same year, the same set of products cost less than $y? (In other
words, what do you think is the probability that the inflation rate in year X was
lower than z%?)

Finally, we also elicited respondents’ beliefs about the national income distribution:

Assume that in 2018, we randomly picked a household in the United States.
What do you think is the probability that this household earned less than USD y

in 2018, before taxes and deductions?

E.2 Measuring Cognitive Uncertainty

Choice under risk. After stating a switching interval in a price list, a participant was
reminded of their valuation (switching interval) for the lottery on the previous price list
screen. They were then asked to indicate how certain they are that to them the lottery is
worth exactly the same as their previously indicated certainty equivalent. To answer this
question, subjects used a slider to calibrate the statement “I am certain that the lottery is
worth between a and b to me.” If the participant moved the slider to the very right, a and
b corresponded to the previously indicated switching interval. For each of the 20 possible
ticks that the slider was moved to the left, a decreased and b increased by 25 cents, in
real time. In gain lotteries, a was bounded from below by zero and b bounded from above
by the lottery’s upside. Analogously, for losses, a was bounded from below by the lottery’s
downside and b from above by zero. The slider was initialized at cognitive uncertainty of
zero, but subjects had to click somewhere on the slider in order to be able to proceed.

Belief updating. The instructions introduced the concept of an “optimal guess.” This guess,
we explained to subjects, uses the laws of probability to compute a statistically correct
statement of the probability that either bag was drawn, based on Bayes’ rule. We highlighted
that this optimal guess does not rely on information that the subject does not have.

After subjects had indicated their probabilistic belief that either bag was drawn, the next
decision screen elicited cognitive uncertainty. Here, we asked subjects how certain they are

64



that their own guess equals the optimal guess for this task. Operationally, similarly to the
case of choice under risk, subjects navigated a slider to calibrate the statement “I am certain
that the optimal guess is between a and b.”, where a and b collapsed to the subject’s own
previously indicated guess in case the slider was moved to the very right. For each of the
30 possible ticks that the slider was moved to the left, a decreased and b increased by one
percentage point. a was bounded from below by zero and b bounded from above by 100.
Again, the slider was initialized at cognitive uncertainty of zero and we forced subjects to
click somewhere on the slider to be able to proceed.

E.3 Logistics and Pre-Registration

Based on a pre-registration, we recruited N = 700 completes. We restricted our sample to
AMT workers that were registered in the United States, but we did not impose additional
participation constraints. After reading the instructions, participants completed three com-
prehension questions. Participants who answered one or more control questions incorrectly
were immediately routed out of the experiment and do not count towards the number of
completes. In addition, towards the end of the experiment, a screen contained a simple
attention check. Subjects that answered this attention check incorrectly are excluded from
the data analysis and replaced by a new complete, as specified in the pre-registration. In
total, 62% of all prospective participants were screened out of the experiment in the com-
prehension checks. Of those subjects that passed, 2% were screened out in the attention
check.

In terms of timeline, subjects first completed six of the choice under risk tasks. Then,
we elicited their survey expectations about various economic variables, as discussed below.
Finally, participants completed a short demographic questionnaire and an eight-item Raven
matrices IQ test.

Participants received a completion fee of $1.70. In addition, each participant earned a
bonus. The experiment comprised three financially incentivized parts: the risky choice lists,
the survey expectations questions, and the Raven IQ test. For each subject, one of these parts
of the experiment was randomly selected for payment. If choice under risk was selected, a
randomly selected decision from a randomly selected choice list was paid out.

The experiments reported in this appendix were pre-registered in the AEA RCT registry,
see https://www.socialscienceregistry.org/trials/4493. As we pre-registered,
all regression analyses of the replication data exclude extreme outliers. In choice under risk,
these are observations for which (i) the normalized certainty equivalent is strictly larger
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than 95% while the objective payout probability is at most 10%, or (ii) the normalized
certainty equivalent is strictly less than 5% while the objective payout probability is at least
90%. In belief updating, outliers are defined analogously.

E.4 Results for Choice Under Risk

Table 14 provides a regression analysis of the data. As in the main paper, our object of
interest is the extent to which a subject’s normalized certainty equivalent is (in)sensitive to
variations in the probability of the non-zero payout state. Thus, we regress a participant’s
absolute normalized certainty equivalent on (i) the probability of receiving the non-zero
gain / loss; (ii) cognitive uncertainty; and (iii) an interaction term.

The results show that higher cognitive uncertainty is associated with lower responsive-
ness to variations in objective probabilities, in both the gains and the loss domain. In terms
of quantitative magnitude, the regression coefficients suggest that with cognitive uncer-
tainty of zero, the slope of the neo-additive weighting function is given by 0.65, yet it is
only 0.34 for maximum cognitive uncertainty of one. A different way to gauge quantita-
tive magnitudes is to standardize cognitive uncertainty into a z-score. When doing so, the
regression results (not reported) suggest that an one standard deviation increase in cogni-
tive uncertainty decreases the slope of the neo-additive weighting function by about 0.11.
These are arguably large effect sizes that underscore the quantitative relevance of cognitive
uncertainty in generating probability weighting.
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Table 14: Inelasticity with respect to probability and cognitive uncertainty in Risk B

Dependent variable:
Absolute normalized certainty equivalent

Gains Losses Pooled

(1) (2) (3) (4) (5) (6)

Probability of payout 0.68∗∗∗ 0.68∗∗∗ 0.59∗∗∗ 0.59∗∗∗ 0.65∗∗∗ 0.65∗∗∗
(0.02) (0.02) (0.03) (0.03) (0.02) (0.02)

Probability of payout × Cognitive uncertainty -0.41∗∗∗ -0.41∗∗∗ -0.20∗∗ -0.20∗∗ -0.31∗∗∗ -0.31∗∗∗
(0.09) (0.09) (0.09) (0.09) (0.07) (0.07)

Cognitive uncertainty 11.6∗∗ 11.3∗∗ 14.8∗∗∗ 14.8∗∗∗ 13.5∗∗∗ 13.5∗∗∗
(5.19) (5.18) (5.26) (5.17) (3.84) (3.84)

Demographic controls No Yes No Yes No Yes

Observations 1271 1271 1254 1254 2525 2525
R2 0.54 0.54 0.41 0.41 0.47 0.47

Notes. Demographic controls include age, gender, college education and performance on the Raven matrices
test. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. The dependent
variable is a subject’s absolute normalized certainty equivalent. The sample includes choices from all baseline
gambles with strictly interior payout probabilities. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

E.5 Results For Belief Updating

Columns (1)–(3) of Table 15 provide an econometric analysis, which again corresponds to
the neo-additive weighting function. Here, we regress a subject’s stated posterior on (i) the
Bayesian posterior; (ii) cognitive uncertainty; and (iii) their interaction term. We find that
with cognitive uncertainty of zero, the slope of the neo-additive weighting function is given
by 0.83 but it is only 0.41 with cognitive uncertainty of one.
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Table 15: Belief updating: Regression analyses for Beliefs B

Dependent variable:
Posterior belief Ln [Posterior odds]

(1) (2) (3) (4) (5) (6)

Bayesian posterior 0.80∗∗∗ 0.80∗∗∗
(0.01) (0.01)

Bayesian posterior × Cognitive uncertainty -0.39∗∗∗ -0.39∗∗∗
(0.04) (0.04)

Cognitive uncertainty 16.6∗∗∗ 16.5∗∗∗ -0.17∗∗ -0.17∗∗ -0.16∗∗ -0.16∗∗
(2.32) (2.32) (0.07) (0.07) (0.07) (0.07)

Log[Posterior Odds] 0.50∗∗∗ 0.50∗∗∗ 0.58∗∗∗ 0.58∗∗∗
(0.01) (0.01) (0.03) (0.03)

Ln [Bayesian odds] × Cognitive uncertainty -0.24∗∗∗ -0.24∗∗∗
(0.04) (0.04)

Log [Likelihood ratio] -0.099∗∗ -0.10∗∗
(0.04) (0.04)

Log [Prior odds] × Cognitive uncertainty -0.40∗∗∗ -0.40∗∗∗
(0.07) (0.07)

Log [Likelihood ratio] × Cognitive uncertainty -0.20∗∗∗ -0.19∗∗∗
(0.05) (0.05)

Constant 11.1∗∗∗ 11.2∗∗∗ 0.046 0.036 0.043 0.035
(0.90) (1.86) (0.03) (0.10) (0.03) (0.10)

Demographic controls No Yes No Yes No Yes

Observations 3187 3187 3012 3012 3012 3012
R2 0.73 0.73 0.63 0.63 0.63 0.63

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. To avoid a
mechanical loss of observations resulting from the log odds definition, the log posterior odds in columns (3)–
(6) are computed by replacing stated posterior beliefs of 100% and 0% by 99% and 1%, respectively. The results
are virtually identical without this replacement. Demographic controls include age, gender, college education
and performance on a Raven matrices test. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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E.6 Results for Economic Forecasts

Table 16 summarizes the results. Again, we see that the responsiveness of stated expecta-
tions with respect to the objective / historical probabilities strongly decreases in measured
cognitive uncertainty.

Table 16: Survey expectations: Regression analyses for the B experiments

Dependent variable: Probability estimate about:
Income distr. Stock market Inflation rate

(1) (2) (3) (4) (5) (6)

Objective probability 0.90∗∗∗ 0.90∗∗∗ 0.69∗∗∗ 0.69∗∗∗ 0.76∗∗∗ 0.76∗∗∗
(0.01) (0.01) (0.02) (0.02) (0.02) (0.02)

Objective probability × Cognitive uncertainty -0.41∗∗∗ -0.41∗∗∗ -0.53∗∗∗ -0.52∗∗∗ -0.60∗∗∗ -0.60∗∗∗
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

Cognitive uncertainty 18.9∗∗∗ 18.9∗∗∗ 24.2∗∗∗ 24.6∗∗∗ 27.5∗∗∗ 27.4∗∗∗
(2.37) (2.37) (2.27) (2.31) (2.86) (2.86)

Demographic controls No Yes No Yes No Yes

Observations 1980 1980 1892 1892 1848 1848
R2 0.83 0.83 0.52 0.52 0.54 0.54

Notes. OLS estimates, robust standard errors (in parentheses) are clustered at the subject level. Demographic
controls include age, gender, college education and performance on the Raven matrices test. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

F Partition Manipulation

Under the assumptions that (i) the model parameter d reflects a fixed prior and (ii) that
it is partly influenced by a 1/N logic, where N is the number of states, we can manipulate
the default / prior through a so-called partition manipulation that increases the number of
states without changing the normatively relevant problem features. If this actually affects
the prior, the model in Section 2 would predict that observed decisions decrease, and that
the magnitude of this effect increases in cognitive uncertainty.

Design. We designed treatment conditions that increase the number of states from two
to ten. We further designed these treatments with the objective of holding cognitive uncer-
tainty fixed. In choice under risk, we do so by framing probabilities in terms of the number
of colored balls in a bag. For example, we describe a lottery as:

Out of 100 balls, 80 are red. If a red ball gets drawn: get $20.
20 balls are blue. If a blue ball gets drawn: get $0.
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In addition to this treatment, labeled Risk A high default, we also implemented treatment
Risk A low default in a within-subjects design (with random order of treatments). Here, we
implemented the same lotteries as in Risk A high default, yet we split the zero-payout state
into nine payoff-equivalent states with different probability colors. For example, the lottery
above would be described as:

Out of 100 balls, 80 are red. If a red ball gets drawn: get $20.
2 balls are blue. If a blue ball gets drawn: get $0.
2 balls are black. If a black ball gets drawn: get $0.
2 balls are white. If a white ball gets drawn: get $0.
. . .
4 balls are yellow. If a yellow ball gets drawn: get $0.

We designed a similar manipulation for the balls-and-urns updating task. Recall that in
treatment Beliefs A, an example updating problem is that the base rates for bags A and B
are 70% and 30%, and the signal diagnosticity (number of red balls in bag A and number of
blue balls in bag B) is 70%. Now, in treatment Beliefs A low default, we split the probability
mass for bag B up into nine different bags. That is, there are now ten bags, labeled A
through J. In the specific example above, the base rate for A would again be 70%, the one
for B through I 3% each and the one for J 6%. Bag A would contain 70 red and 30 balls,
and all bags B through J 30 red and 70 blue balls. That is, these bags have identical ball
compositions. Observe that in both the lottery choice problem and the belief updating task
the normatively relevant structure of the problem (which consists of the objective lottery
payoff profile and the Bayesian posterior) is held constant.

Importantly, the elicitation of decisions was held exactly constant across treatments.
For instance, in both Beliefs A replication and Beliefs A low default, subjects only enter their
subjective probability that Bag A got selected. The implied probability for the other events
was displayed automatically. In Beliefs A replication, if a subject entered probability p% for
Bag A, then our computer interface automatically showed the joint subjective probability
for Bags B–J as (1− p)%.

We implemented these experiments in two ways. First, as part of the A experiments,
with a total of 102 subjects in lottery choice and 108 subjects in belief updating. This was
conducted in a within-subjects design. Second, we implemented the same treatments as
part of our B experiments. The only differences to the A experiments were (i) as always,
a different CU measure, (ii) a multiple price list procedure rather than a direct elicitation,
and (iii) that in experiment B the treatments were implemented in a between-subjects de-
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sign. 300 subjects participated in Risk B low default and Risk B high default. 300 subjects
participated in treatment Beliefs B low default, which was randomized within the same ex-
perimental sessions as a replication of treatment Beliefs B. Appendix G shows screenshots
of the experimental instructions. Appendix E.3 discusses the pre-registration of the B exper-
iments, including the pre-specified exclusion of extreme outliers.

Interpretation. This experimental manipulation lends itself to two interpretations, both
of which we embrace. First, as discussed above, the default decision could be influenced by
a type of ignorance prior or 1/N heuristic. A second interpretation is that the manipulation
makes the zero-payout state in the risky choice problems more visually salient because it
now appears nine times on the decision screen. Similarly, in the belief updating problems,
Bag A (the one for which we elicit the subjective posterior probability) becomes less salient
because there are nine other bags in the partition manipulation. These two interpretations
share the common theme that they emphasize how the partition manipulation changes peo-
ple’s heuristic (or intuitive) response, prior to actually thinking about the specific problem
at hand. This is what we intend to capture and manipulate.

Results. We report mixed results across the A and B experiments. First, we find that in-
creasing the number of partitions significantly increases cognitive uncertainty in the belief
updating A experiment (two-sided t-test, p = 0.01), but not in the risk A (p = 0.73), choice
under risk B (p = 0.98) or beliefs B experiments (p = 0.39). In all variants, average cog-
nitive uncertainty in the high-partition treatment exceeds average cognitive uncertainty
in the low-partition treatments. This suggests that the experimental manipulation affects
cognitive noise to some extent.

Second, Appendix Table 17 reports regression estimates for the effect on choices. We
find that the partition manipulation significantly decreases average decisions in all experi-
ments but the Risk A variant. Moreover, in the B experiments on belief updating and choice
under risk, in both of which the manipulation affected average choices, the response to
the change in the default is significantly more pronounced among cognitively uncertain
decisions. In the A experiments, the interaction between the treatment manipulation and
cognitive uncertainty is very weak, though note that in Risk A we do not observe a main
treatment effect on choices to begin with. Overall, we conclude that the partition manipu-
lation is only partly successful in affecting the cognitive default without affecting cognitive
noise.
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G Experimental Instructions and Control Questions

Below we provide screenshots of the instructions, control questions and decision screens of
the main experiments. Corresponding information for the self-replication experiments as
well as the default manipulation experiments can be found in a working paper version of
this paper (Enke and Graeber, 2019).
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G.1 Treatment Risk Main
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G.2 Treatment Beliefs Main
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Figure 8: Beliefs elicitation

83



84



G.3 Stock market expectations
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G.4 Complex numbers in choice under risk
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G.5 Complex numbers in belief updating
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G.6 Default manipulation in choice under risk
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G.7 Default manipulation in belief updating
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