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Abstract

This paper studies how people infer a state of the world from information struc-
tures that include additional, payoff-irrelevant states. For example, learning from
a customer review about a product’s quality requires accounting for the reviewer’s
otherwise-irrelevant taste. This creates an attribution problem common to all infor-
mation structures with multiple causes. We report controlled experimental evidence
for pervasive overinference about states that affect utility – a form of “omitted vari-
able bias” in belief updating –, providing an explanation for various misattribution
patterns. In studying why systematic misattribution arises, we consistently find that
errors are not due to deliberate effort avoidance or a lack of cognitive capacity. In-
stead, people behave as if they form incomplete mental models of the information
structure and fail to notice the need to account for alternative causes. These mental
models are not stable but context-dependent: misattribution responds to a variety of
attentional manipulations, but not to changes in the costs of inattention.
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1 Introduction

The difficulty of attending to, aggregating and processing the abundance of available
information in practice motivates a strand of work on errors in belief formation. For ex-
ample, people may be partially inattentive to information (Bartoš et al., 2016; Caplin and
Dean, 2015; Enke, 2020; Hanna et al., 2014; Malmendier and Lee, 2011; Sims, 2003)
or fail to account for the relationship between different signals (Enke and Zimmermann,
2019; Eyster and Rabin, 2010; Levy and Razin, 2015). In some situations, however, the
amount of information is manageable in principle and agents are capable of attending to
all available pieces of information. Rather than selecting or aggregating these signals, the
challenge of belief formation then often lies in selecting the right interpretation of a piece
of information. In this case, the agent faces an attribution problem as he may struggle to
figure out what a given piece of information actually means. Rather than the first type
of environment with many signals, this paper studies attribution problems in information
structures with many causes for a single signal. To take a stylized example, suppose that
a shopper reads a positive customer review that is a function of actual product quality
and the reviewer’s personal taste. Learning from a positive review about underlying qual-
ity requires accounting for other, extraneous causes in the information structure, such as
differing tastes. A failure to account for alternative causes creates misattribution to the
causes of interest, a form of “omitted variable bias” in belief formation. For example, a
decision-maker who does not factor in the role of varying tastes over-attributes a positive
review to high product quality.

A collection of separately documented empirical findings is suggestive of this type of
error. The defining pattern is excessive inference about a specific cause of interest, while
neglecting alternative causes that are “nuisance” from the decision maker’s perspective.
For example, CEOs and politicians are rewarded for luck because performance evaluations
and voter support partly fail to condition on external conditions such as the business
climate (Bertrand and Mullainathan, 2001; Wolfers, 2002). People overstate the role
of intentions relative to contextual factors and chance when explaining the behavior of
others (Gurdal et al., 2013; Ross, 1977), known as the fundamental attribution error
in psychology. Applied work on attention shows that people often underreact to certain
elements of the price structure such as sales taxes when learning from a price about the
value of a good (Abaluck and Gruber, 2011; Allcott, 2011; Chetty et al., 2009; Taubinsky
and Rees-Jones, 2018). When explaining the world, we tend to narrowly focus on the
determinants that matter most to us, which may result in us attributing excessive causal
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power to them.
This paper tackles two questions. First, how do people learn about a target state of

the world from information that also depends on otherwise irrelevant states? In simple,
tightly controlled updating experiments we document a systematic neglect of nuisance
causes and misattribution to causes of interest. We validate the generalizability of the
key finding using a naturalistic variant of the experiments that exploits an economically
relevant situation and does not rely on explicit computations. Second, why does such mis-
attribution arise? We examine this question by leveraging the distinction between “fric-
tions” and “mental gaps” (e.g., Handel and Schwartzstein, 2018).1 Frictions are directly
linked to the costs of information processing, and may occur due to mental processing
noise, capacity constraints or other forms of attentional limitations (Caplin and Dean,
2015; Gabaix, 2014; Matějka and McKay, 2015; Sims, 2003; Woodford, 2019). A men-
tal gap describes the divergence between how people think about a problem and how
they should think about it given costs. People sometimes appear to form incorrect men-
tal models or problem representations.2 The data from more than twenty experimental
treatments that examine the cognitive mechanisms underlying the neglect of alternative
causes consistently point to a mental gap: subjects are unaware of their neglect and mi-
nor attentional manipulations successfully debias respondents, whereas variations of the
costs and benefits of attention have little to no effect.

We present causal evidence from laboratory and online experiments. We use a two-
pronged approach with two complementary paradigms: the baseline experiment strips
away the real-world context and associated ambiguities to create a maximally controlled
belief updating setting, which comes at the cost of a potential lack of realism. The comple-
mentary set of vignette experiments replicates the results in settings with naturalistic task
framing that is closer to real-world inference problems, but sacrifices some of the control
obtained in the former. In the baseline condition of the laboratory experiment, treatment
Narrow, subjects guess an unknown, random state of the world and are paid for accuracy.
Before indicating their guess, they receive a piece of information (the signal) that depends
both on that target state and another unobserved state. Specifically, two numbers X and
Y are drawn from known distributions. In this baseline condition, subjects have to guess
X, but not Y. Because Y is not a prediction target, it constitutes a nuisance variable from

1This taxonomy is representative of a collection of related classifications put forward in the literature,
such as that of “bounds errors” versus “astray errors” (Rabin, 2013).

2See, e.g., Bordalo et al. (2020a); Enke (2020); Eyster and Rabin (2010); Gagnon-Bartsch et al. (2019);
Gennaioli and Shleifer (2010); Hauser and Schwarz (2016); Jehiel (2005); Schwartzstein (2014); Spiegler
(2016, 2017).
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the subject’s perspective: it confounds information about the target variable X , but its
realization does not affect his payoff given a stated belief.3 In a typical task, X is drawn
from the simple discretized uniform distribution on {30, 40,50, 60,70} and Y is drawn
at random from {10,20, 30,40, 50,60, 70,80, 90}. Subjects observe a signal that depends
on both states, such as the average of the drawn numbers, S = X+Y

2 = 70. Crucially, in-
ference from S about X requires accounting for the random variation in S that is due to
Y. In the context of the previous example, a shopper might want to infer unobservable
product quality (X ) from an observable customer review (S), which is a function of both
quality X and the reviewer’s tastes Y . Failing to properly account for the stochasticity of
Y generates misattribution of the signal to X . Subjects are informed of the simple data-
generating process and the signal structure, eliminating all structural uncertainty in the
information environment. We confirm that subjects are not confused about the task setup
using an extensive set of control questions; we always show all relevant information on
the decision screen; and we run additional control treatments to address potential mis-
understandings. In this baseline condition, where subjects are incentivized to state the
full distribution of their belief about X but not about Y , beliefs about X exhibit pervasive
neglect of the nuisance variable Y . In the numerical example above, this is equivalent to
stating that X = 70 with certainty, as if S = X . The Bayesian posterior belief about X ,
by contrast, assigns equal probability to 50, 60 and 70. Across all tasks, only 17% of all
stated beliefs are in line with the Bayesian benchmark, whereas 62% display full neglect
of Y . We refer to this as nuisance neglect and conceptualize its relationship to other forms
of bias below.

In a baseline control treatment, Broad, a separate set of subjects is incentivized to
guess the joint distribution of X and Y , rather than only X . This turns Y from a nuisance
into a target variable, while keeping the overall monetary stakes as well as the objec-
tive updating problem (and thus the Bayesian posterior) exactly identical to the baseline
condition. Because the information structure is unchanged, the complexity and cost of
computing a posterior for X should be unchanged. Note that this treatment is a control
condition that alleviates a shortcoming of recent experimental work on belief formation,
because it manages to hold the objective updating problem constant across conditions.⁴

3We define a nuisance variable in Section 3.1.2 as one whose realization does not affect utility condi-
tional on an action.

⁴Experimental work on belief updating routinely compares beliefs in information environments with
and without a feature of interest. A manipulation of the signal structure, however, can confound the analysis
if it affects other properties of the updating problem, such as the complexity of forming an update (as in,
for example, Enke and Zimmermann, 2019).

3



In treatment Broad, we document a large and statistically significant treatment difference
relative to treatment Narrow. Moreover, the median belief in Broad is indistinguishable
from the Bayesian posterior, implying that the experimental setup is not too complex per
se and subjects are in principle able to solve the task correctly. More than 70% of all stated
beliefs in Broad correspond to the Bayesian posterior.

We examine the external validity of these findings using a set of naturalistic vignette
experiments that leverage real-world scenarios, do not have the character of a math prob-
lem, include an a application with economic relevance and a variant featuring a simple
choice instead of a belief incentivized with a complex scoring rule. Next to the vignette
experiments, a battery of laboratory and online experiments (i) tests the robustness of
nuisance neglect by varying various elements of the experimental design, such as the spe-
cific signal structure (e.g., a signal outside of the variables support), the distribution of
the random states (non-uniform distributions), and the elicitation procedure,⁵ (ii) doc-
uments nuisance neglect in a large and heterogeneous online population; and (iii) tests
the predictions of existing theories of belief formation in this setup. Specifically, we de-
sign sharp tests of different models using systematic variations of the data and signal
structures. We find that the pattern of neglect of nuisance variables in the data is not
consistent with overweighting the signal (Benjamin, 2019, for a review of overinference),
underweighting the base rate (Bar-Hillel, 1980; Grether, 1980) or diagnosticity-based
theories of expectation formation (Bordalo et al., 2018).

The second part of the paper studies why nuisance neglect arises by investigating
the underlying cognitive mechanisms. We adopt the distinction between frictions and
mental gaps as an instructive taxonomy for the present application: the neglect of nuisance
variables may be due to the (computational) difficulty of accounting for the nuisance
variable Y in conjunction with X – a friction – or due to a failure to recognize the necessity
to take into account Y to begin with – a form of misconstrual or mental gap.

To examine these explanations, we design additional experiments that test for a po-
tential mental gap. We present a series of additional experiments that aim to manipulate
how people think about the updating task, while keeping the cost of accounting for Y

constant. If drawing people’s attention to the role of Y without changing the updating
problem affects the degree of nuisance neglect, a mental gap is likely to play a role.

We present three main findings from the analysis of mental gaps. First, nuisance ne-

⁵For example, we disentangle the elicitation procedure from prediction incentives by having subjects
state the joint distribution when only X is incentivized – unlike in Narrow –, or by having them state a
marginal belief about X first when both variables are incentivized – unlike in Broad.
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glect is reduced substantially and beliefs are pre-dominantly Bayesian once attention is
drawn to Y . A contextual cue to attend to Y is sufficient to reduce nuisance neglect, while
maintaining Y ’s role as a nuisance variable and holding constant the difficulty of account-
ing for it. In treatment Hint, subjects only guess X but see an additional verbal statement
on each elicitation screen: “Also think about the role of Y.” The hint produces a large and
statistically significant treatment difference relative to the baseline condition Narrow.

Second, while the exogenous manipulations of attention have the potential to debias,
we find that subjects are able to overcome nuisance neglect on their own when nudged
to reconsider their solution strategy. In treatment Enforced Deliberation, we implement a
thirty-second deliberation time on the elicitation screen before the input fields are acti-
vated. The objective is to encourage subjects to deliberate their problem interpretation
before they form their posterior. Enforced deliberation time substantially reduces nuisance
neglect and is roughly half as effective as an explicit hint.

Note that the effect of minor attentional manipulations is striking in the sense that
even in condition Narrow, all relevant pieces of information are displayed on the screen
and we ensure that subjects are not confused by the setup. However, they may still fail
to realize the necessity to account for the variation of Y to begin with and would conse-
quently be unaware of committing an error. In a third step, we test this lack-of-awareness
hypothesis directly by measuring confidence in beliefs using incentivized willingness-to-
pay (WTP) to have a guess replaced by an optimal guess. Exploiting causal variation, we
find that nuisance neglect is associated with similar confidence levels as Bayesian updat-
ing, indicating that subjects are unaware of the neglect.

These three findings consistently suggest an underlying mental gap: Attentional ma-
nipulations that plausibly hold the cost of information processing fixed close the mental
gap of failing to attend to Y , which subjects seem to be unaware of to begin with.

In a companion exercise, we empirically investigate the friction mechanism for nui-
sance neglect. Why do people systematically neglect elements of an information structure,
even in simple contexts? One candidate explanation is that such model simplifications re-
flect a strategy to economize on cognitive costs.⁶ We report two main findings on the
applicability of this cognitive cost-benefit perspective to our setting. First, we find that
increasing the stake size tenfold (in the laboratory) or fivefold (in online experiments)

⁶A prominent view in cognition research holds that humans are “cognitive misers” who continuously
seek strategies to avoid thinking (Fiske and Taylor, 2013). Similarly, a large class of models in economics
relies on weighing the expected benefits against the cognitive costs of attention (Caplin and Dean, 2015;
Gabaix, 2014), prominently including theories of rational inattention (Sims, 2003, 2006).
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substantially increases effort as measured by response times, but does not reduce the
prevalence of nuisance neglect, at odds with an underlying lack of effort. Second, we
directly test for the presence of cost-benefit considerations by manipulating the specific
monetary loss incurred from committing nuisance neglect, based on how much “noise”
and “bias” the presence of Y introduces into the posterior of an agent who mistakenly
updates as if S = X . Strikingly, the presence of nuisance neglect does not respond to the
monetary loss associated with its expected (in)accuracy.

Taken together, the analysis of mechanisms suggests that nuisance neglect occurs
when subjects do not mentally account for Y to begin with. They are unaware of this
omission, and it does not reflect a lack of effort. People seem to initially “fail to notice”
the necessity of accounting for the variation in Y , which may lead them to form a misspec-
ified problem representation. Attentional cues that nudge subjects into re-considering the
problem (conditions Enforced Deliberation and Hint) improve updating substantially. The
combined evidence is more consistent with a mental gap interpretation of misattribution.

The paper proceeds as follows. Section 2 embeds the paper in the existing literature.
In Section 3, we present the baseline design and results from the laboratory and online
experiments, as well as extensions that include a replication in a naturalistic context and
robustness exercises. In Section 4, we examine why nuisance neglect occurs based on the
distinction between mental gaps and cost-benefit considerations. Section 5 concludes.

2 Related Literature

The paper contributes to several literatures. In the experimental literature, this study of
misattribution in the basic case of interpreting a single piece of information complements
recent work on updating errors in situations that require the joint processing and aggre-
gration ofmany pieces of information (Enke, 2020; Enke and Zimmermann, 2019). Other
related work highlights failures of hypothetical thinking (Esponda and Vespa, 2014, 2019;
Martínez-Marquina et al., 2019) and the failure to notice important features of the avail-
able data (Hanna et al., 2014). Benjamin (2019) reviews a voluminous body of empirical
research on probabilistic reasoning. His meta-study concludes that beliefs often tend to
be less sensitive to variation in problem parameters – such as the base rate, diagnosticity
and sample size – than postulated by Bayes’ rule. That people do respond to parameters
albeit too little differs from the type of discrete neglect of a part of the signal structure
documented here. Moreover, we show that subjects do not follow a compelling intuition
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when committing nuisance neglect, which underlies many judgment errors studied in the
heuristics and biases literature (Kahneman and Tversky, 1982; Morewedge and Kahne-
man, 2010; Tversky and Kahneman, 1983). Finally, this paper contributes a new perspec-
tive to the long-standing debate on the conditions for overreaction versus underreaction to
information (Adam et al., 2017; Bordalo et al., 2020b; Coibion and Gorodnichenko, 2012,
2015; Frydman and Nave, 2016; Greenwood and Shleifer, 2014; Landier et al., 2017).⁷
Nuisance neglect simultaneously generates overreaction to payoff-relevant causes and un-
derreaction to nuisance causes, providing testable predictions on their relative likelihood
of occurrence.

In studying why updating errors occur, our findings on the source of nuisance neglect
in attribution problems square with those of Enke (2020), who finds that people some-
times narrowly focus on visible parts of the information structure in signal aggregation
tasks. Enke (2020) argues that people form simplified mental models of a problem that
respond to the computational complexity of a task. Comparable findings in the updating
environments studied here hint at a common cognitive mechanism underlying belief er-
rors in both signal aggregation and attribution problems: an unwitting neglect of parts
of the structure of updating problems. While Enke (2020) shows that this neglect can
be context-driven by varying which signals are visible, the present paper highlights a
different channel: heuristic model simplifications may often be determined by people’s
incentive structure, irrespective of which parts of the information structure are visible.

On the applied side, this paper speaks to a collection of separately documented misat-
tribution patterns. One line of work starting with Chetty et al. (2009) shows inattention
to specific features of the decision context (Abaluck and Adams, 2017; Abaluck and Gru-
ber, 2011; Allcott, 2011; Taubinsky and Rees-Jones, 2018). For example, Taubinsky and
Rees-Jones (2018) find that people underreact to sales taxes. While their experiment does
explicitly pose an inference problem, the results are consistent with consumers systemati-
cally overinferring from price (S) about the value of the product (X ) while neglecting the
sales tax (Y ). Other phenomena that can be interpreted through the lens of nuisance ne-
glect are outcome bias in punishing decisions that are based on luck (Y ) rather than effort
(X ) alone (Brownback and Kuhn, 2019; Gurdal et al., 2013); in consumer choice, there
is misattribution of positive experience to the intrinsic value of an outcome (X ) while ne-

⁷Championed by Kahneman and Tversky and prominent in finance is the view that beliefs move too
much (De Bondt and Thaler, 1985; Bordalo et al., 2019; Shiller, 1981; Tversky and Kahneman, 1971),
while an older psychology literature and the dominant view in macroeconomics maintains that beliefs tend
to move too little (Benjamin, 2019; Edwards, 1968; Mankiw and Reis, 2002; Rabin and Schrag, 1999).
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glecting reference-dependent surprise (Y ) (Bushong and Gagnon-Bartsch, 2018) and to
the quality of a consumption good (X ) rather than a contextual state such as the weather
(Y ) (Haggag et al., 2018); and in social learning contexts, people overinfer about a per-
son’s private information (X ) from their action, neglecting that the action also embeds
private information from earlier movers (Y ) (Eyster et al., 2018). In much of this work,
inattention specifically occurs to problem features that are plausibly nuisance variables.
At the same time, findings from previous experimental work on environments with many
signals do not apply to these settings (e.g., Bartoš et al., 2016; Enke and Zimmermann,
2019).

Research in cognitive science has studied related phenomena that speak to the ex-
ternal validity of our results. The “causal frame problem” shows that people often form
incomplete causal models of a problem. Work on biases in causal reasoning finds that
people employ cognitive shortcuts that can result in the neglect of alternative causes
(Fernbach et al., 2010; Fernbach and Rehder, 2013; Sloman and Lagnado, 2015). This
body of work indicates that the findings from the highly controlled but stylized experi-
mental environments studied here carry over to environments with a more naturalistic
task framing.

Finally, the paper speaks to a large theoretical literature. Work on the rational inat-
tention paradigm focuses on rational information acquisition given cognitive capacity
constraints or processing costs. Rational inattention models do not generate systematic
misinference conditional on processing a piece of information, as they posit Bayesian in-
ference from the information that an agent actually attends to (Caplin and Martin, 2015;
Caplin et al., 2020; Matejka and McKay, 2014; Sims, 2003; Wiederholt, 2010). The dis-
crete neglect of certain dimensions in the data is reminiscent of the sparsity-based model
of Gabaix (2014), applied to belief updating. The lack of responsiveness to variation in
costs and benefits, however, is at odds with sparse maximization. A key characteristic of
the combined evidence is that people appear to form inaccurate mental representations
of problems because they are looking at the problem the wrong way, rather than trading
off the benefits and costs of more accurate representations. This appears more compati-
ble with frameworks of mental gaps than models of rational inattention. Inaccurate priors
may lead to self-serving misattribution (Hestermann and Yaouanq, 2020) or discrimina-
tion (Chauvin, 2020) but are unlikely to be at play here because priors are controlled
experimentally. The most closely related theoretical frameworks view incomplete repre-
sentations as reflecting incorrect beliefs about which variables matter (Gagnon-Bartsch et
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al., 2019; Schwartzstein, 2014). All of these models share the prediction that representa-
tions should look fairly consistent across problems. The evidence in this paper highlights
that they miss how heuristic model simplifications may often not be stable but constructed
on-the-fly in response to task demands, environmental cues and even suggestions to re-
consider a representation.

3 Evidence for Nuisance Neglect

3.1 Baseline Experiments

To causally examine the role of nuisance variables in information structures for belief up-
dating, the experimental design aims to satisfy the following requirements: (i) a fully con-
trolled and transparent data-generating process and information structure that is known
to subjects, (ii) an experimental manipulation of the presence of nuisance causes, (iii)
limited complexity to minimize confusion, and (iv) an incentive-compatible procedure to
extract beliefs.

3.1.1 Design

Experimental variation in the presence of nuisance causes can be achieved by changing
the information structure, but this also affects the complexity of updating beliefs across
conditions. We instead design a simple setting that implements this variation without
changing the information structure or data-generating process. The basic updating task
features two unobserved random numbers X and Y , generated by stochastic processes
known to subjects. To simplify, these numbers are independently drawn from two discrete
uniform distributions with small sample spaces. Subjects receive a signal S = s on the
two unknown draws: depending on the task, they see either the sum or the average of
the two numbers.⁸ The signal structure maps two inputs, i.e., the realizations of random
variables X and Y , to a one-dimensional output, i.e., the observed signal s. The experiment
creates exogenous between-subject variation in whether the agent’s payoff depends on
the realizations of only one or both of the inputs in the signal structure. There are two
experimental conditions: In Narrow, subjects are paid to guess only X , while in Broad,

⁸In the baseline tasks, the signal is an unbiased estimator of the mean of X . Either subjects receive the
average of the drawn numbers and the prior distributions of X and Y have identical means, or they see
the sum of the drawn numbers and Y has a mean of zero. We study more general signal structures from
Section 3.2.
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subjects are paid to guess both X and Y . The experimentally controlled prior, the signal
structure, and the Bayesian posterior are identical in Narrow and Broad. A Bayesian agent
thus forms identical beliefs in both conditions. By randomly choosing only one of the
guesses in Broad for payment, the size of the monetary incentive is kept constant.

Table 1: Overview of baseline task specifications

Sample space of X Sample space of Y Signal structure Signal realization

30, 40, 50, 60, 70 10, 20, 30, 40, 50, 60, 70, 80, 90 (X + Y )÷ 2 60
230, 240, 250, 260, 270 210, 220, 230, 240, 250, 260, 270, 280, 290 (X + Y )÷ 2 230
180, 190, 200, 210, 220 180, 190, 200, 210, 220 (X + Y )÷ 2 200
80, 90, 100, 110, 120 -30, -20, -10, 0, 10, 20, 30 X + Y 80
130, 140, 150, 160, 170 -25, -15,-5, 0, 5, 15, 25 X + Y 165

Notes: Overview of the five baseline belief tasks in the laboratory study. The distributions of X and Y as well as the
signal structure are identical in both treatment conditions. X and Y are independently drawn from two discrete
uniform distributions, i.e., every indicated outcome is equally likely. In the baseline study, all subjects received
the same (random) signal realization. In the complementary online experiments, signal realizations were drawn
at the subject level.

Subjects complete the five updating tasks of Table 1 in random order without receiving
feedback in between. For example, in the first task of Table 1, X is one of five numbers,
30, 40, 50, 60 or 70 with equal probability, while Y is independently drawn with equal
probability from 10, 20, 30, 40, 50, 60, 70, 80 and 90. Subjects learn that the average of
X and Y is 60 and then state their belief as described in detail in Section 3.1.3.⁹ To solve
this task, subjects need to identify all (X , Y ) combinations with an average of 60, that
is (30, 90), (40, 80), (50, 70), (60, 60), (70, 50). Both numbers being drawn uniformly
and independently, it follows that each of these outcomes is equally probable. Additional
task specifications and treatment variations address the robustness of the baseline results
and examine the nature of updating rules (see Section 3.2). For example, we replicate
our findings with more general data and signal structures, for example when the signal
falls outside of the support of a variable.

A key feature of this design is that unlike related empirical studies of updating errors
(Caplin et al., 2011; Dean and Neligh, 2019; Enke, 2020; Enke and Zimmermann, 2019),
this experimental setup holds the information structure fixed across conditions.

⁹Note that in the baseline study, all subjects received the same (random) signal realization. In comple-
mentary online experiments, signal realizations were drawn at the subject level.
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3.1.2 Definition of Nuisance Variables and Predictions

To fix ideas, we delineate basic concepts underlying the baseline treatment comparison
in a setting that loosely follows Gabaix (2019). Assume an agent (he) who states a belief
b ∈ R about the two-dimensional vector of random states in the updating task, (x , y) ∈ R2.
Without loss of generality, we normalize µX = µY = 0, such that (x , y) denote deviations
from their respective means. The agent chooses b to maximize linear-quadratic utility
after observing a signal s about the random draw (x , y). Crucially, the signal is generated
by a deterministic function of both random variables, i.e., s = f (x , y), with ∂ s

∂ x 6= 0 and
∂ s
∂ y 6= 0. The utility function

u(b, x , y) = −
1
2

�

b−ηx x −ηy y
�2 (1)

yields the following optimal belief:

br(s) =max
b

EU|s =max
b
E
�

−
1
2

�

b−ηx x −ηy y
�2
|s
�

(2)

= E[ηx x +ηy y|s] = ηxE[x |s] +ηyE[y|s]. (3)

This optimal belief is a function of the Bayesian conditional posterior expectation of x ,
E[x |s], and y , E[y|s], as well as weight parameters (ηx ,ηy) that reflect how strongly the
agent’s utility depends on the realization of each variable. The definition of a nuisance
variable directly follows from the weight parameters.

Definition. Z ∈ {X , Y } is a nuisance variable in an updating problem if its realization z

does not affect the agent’s expected utility conditional on a stated belief. Formally, ∀b ∈ R:
∂ [EU|b]
∂ z = 0. This is the case iff ηz = 0.

Intuitively, the agent’s expected payoff in a belief formation task does not respond to
the realization of a nuisance variable for any given stated belief. A nuisance variable is
payoff-irrelevant after stating a belief. Importantly, this does not mean that a nuisance
variable is irrelevant for the agent’s optimal belief br , which is clear from equation (3):
even if µy = 0, br mechanically depends on y through the conditional expectation E[x |s].
E[x |s] is determined by the signal structure S that we assumed is a function of Y .1⁰ The
definition of a nuisance variable highlights that optimal beliefs can depend on variables
whose realizations are payoff-irrelevant conditional on a stated belief. This points to a

1⁰Note that E[x |s] = E[x | f (X , Y ) = s].
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crucial distinction between incentives provided through payoffs on the one hand, and
the necessity of taking into account all elements of an information structure to form a
Bayesian posterior on the other hand.

We now apply this idea to the treatment variation. In Broad, the agent is paid for ac-
curacy of his joint posterior about (x , y), so that his utility depends on both realizations
given a stated belief, i.e., ηx 6= 0 and ηy 6= 0. Thus neither X nor Y are nuisance vari-
ables. In Narrow, however, the agent’s expected utility given a belief only depends on the
realized state of X , but not on that of Y , i.e., ηx 6= 0 but ηy = 0.

Note, however, that since the Bayesian belief about (x , y) is independent of the pre-
diction incentives, the treatment manipulation is designed in such a way that it is inconse-
quential under Bayesian updating. While we focus on a tightly controlled, stylized setting
for the reasons outlined above, note that nuisance variables are readily identifiable in ap-
plied contexts: they are sources of stochasticity that are materially irrelevant to an agent
beyond the necessity to account for them in an inference problem.

The thrust of the baseline prediction is that people neglect nuisance variables in the
updating problem. A priori, this neglect of Y could take on a number of different forms.
The decision maker may implicitly neglect the variance of Y , replace Y with a “default”
value (as in Gabaix, 2014), or apply a particular non-Bayesian updating rule. We inves-
tigate the precise form of nuisance neglect using additional experimental variations, see
Section 3.2.1. A candidate form of neglect is that the agent interprets the signal as if it
only depends on X , but not Y . Nuisance neglect in condition Narrow may then be char-
acterized by the agent taking the signal as fully revealing about X , as if generated by an
alternative deterministic signal structure S̃ = g(X ). The neglectful agent forms his belief
based on a flawed posterior P(X |S̃ = s) instead of P(X |S = s).

Prediction 1. Beliefs exhibit nuisance neglect.

(a) Beliefs in condition Narrow imply a neglect of Y . Specifically, subjects take the signal
as fully revealing about X .

(b) Beliefs in condition Broad are Bayesian.

Prediction 1 directly implies a treatment difference between stated beliefs in condi-
tions Narrow and Broad. The above simplistic notion of neglecting states that are payoff-
irrelevant given a stated belief abstracts from the specific features of attention. It merely
serves to set the stage for our in-depth analysis of the nature of attention and the more ex-
plicit framework of the origins of neglect. In particular, we will later argue and show that
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being a nuisance variable is not a sufficient condition for neglect in the inference problem
and disentangle between endogenously chosen attention and exogenous attentional cues.

3.1.3 Procedures

Subjects in condition Broad guess the joint distribution of X and Y and are randomly
paid for their accuracy in guessing either of these (decision screen in Appendix Figure
33). Subjects in condition Narrow only guess the marginal distribution of X (Appendix
Figure 30).11 The design unobtrusively obfuscates the study’s objective: subjects receive
their signal in encrypted form and have to decipher it using a simple two-step decoding
protocol.12 Note that no subject failed to implement the protocol. In a control treatment
(Simplification, see also Appendix C.4) and all online experiments (Section 3.2.1), this
feature was removed. The findings absent the obfuscation indicate that the obfuscation
would not have been necessary in the baseline experiment. Each belief elicitation (exclud-
ing the deciphering stage) is subject to a five-minute time limit. The findings are robust
to removing both the deciphering and the time limit (Section 3.2).

The elicitation procedure aims at providing a full characterization of subjective beliefs
by having subjects indicate the entire posterior distribution instead of a point prediction.
At the end, one of the tasks is randomly selected to be paid out based on the Binarized
Scoring Rule with a prize of 10 euros (Hossain and Okui, 2013).13 Subjects receive exten-
sive instructions and have to complete eight control questions that test their understand-
ing of the instructions, the data-generating process and signal structure, as well as the
elicitation protocol (see Appendix G). In two unpaid practice tasks, subjects are trained
to indicate a verbally described belief in a way that maximizes their payoff. This training
stage is identical across treatments.

The belief updating problems are followed by a questionnaire. To shed light on cor-

11There is a treatment difference in the elicitation protocol, i.e., whether X and Y or only X is elicited.
Additional treatment variations harmonize the elicitation protocol, i.e., subjects with Narrow incentives
predict both X and Y , and subjects with Broad incentives predict first the marginal of X , and then the
marginal of Y on a separate subsequent page. All main findings persist. See Section 3.2.

12Subjects see a sequence of letters. First, each letter has to be translated into a digit based on a decoding
key displayed on the screen. Then the number 20 has to be added to the result. Subjects are familiarized
with the deciphering process in the practice stage. See also the instructions in Appendix G.

13The scoring rule proposed by Hossain and Okui (2013) remains incentive compatible if subjects are
risk averse. We adopt the approach suggested by Hossain and Okui (2013) to incentivize the entire stated
distribution based on the sum of squared deviations between the probability mass allocated to each value
of the distribution and the corresponding mass that should be allocated after learning the realized outcome.
See Appendix G for further details.
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relates of subject-level heterogeneity in belief formation, we measure performance on an
incentivized test of cognitive capacity (10 Raven matrices, 0.2 euros per correct answer)
and elicit a measure of risk preferences (Falk et al., 2016).

144 student subjects (72 in each treatment) participated in six sessions of the baseline
experiment run at the University of Bonn’s BonnEconLab in July 2017. Treatment status
was randomized within session. We implemented the study in oTree (Chen et al., 2016).
Mean earnings amounted to 11.40 euros – including a 5-euro show-up fee – for an average
session duration of 57 minutes.

3.1.4 Results

We begin with an analysis of stated beliefs at the aggregate level before exploring their het-
erogeneity in Section 3.1.5. Figure 1 illustrates raw beliefs in each baseline task. It shows
the sample average of stated belief distributions in both treatment conditions, alongside
the Bayesian belief and the signal realization. The average subject in Broad forms beliefs
that are closely aligned with the Bayesian posterior. In Narrow, by contrast, subjects on
average assign too much probability mass to outcomes close to the signal value, as implied
by inattention to Y .

Table 2 provides summary statistics and non-parametric tests by task. Median beliefs
in Narrow (column 3) and Broad (column 4) closely correspond to the observed signal
realization (column 1) and the Bayesian benchmark (column 2), respectively. Column
7 shows that belief distribution means and belief distribution variances are significantly
different between treatments at the 0.1% level (M-W U tests).1⁴ Note that the median
variance of stated distributions in Narrow is far too low, indicating that subjects hold too
precise beliefs.

1⁴This holds for all tasks except the distribution means in task (3), in which the signal realization coin-
cides with the Bayesian posterior mean.
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Result 1. Beliefs display nuisance neglect.

(a) The median belief in Narrow exhibits exact nuisance neglect, i.e., P(X |X = s).

(b) The median belief in Broad equals the Bayesian posterior.

(c) There are significant treatment differences in stated posterior distributions between
Narrow and Broad.

Three implications of these results are that (i) there is no systematic confusion about
the experimental setup, since the average belief in Broad is nearly Bayesian, (ii), in Nar-
row, the average belief overshoots in the direction of the signal and (iii) is overprecise
relative to both the Bayesian benchmark and beliefs stated in Broad. Overprecision is the
common finding in belief research that the implied variance of stated beliefs is too low,
indicating people’s excessive confidence in their own judgments (Moore et al., 2015). In
the present context, overprecision in Narrow is solely generated by the presence of a nui-
sance variable, as the information structure does not change relative to Broad. Task (3) in
Figure 1 exemplifies the role of overprecision. Since the signal realization coincides with
the mean of the Bayesian posterior distribution, subjects in Narrow form unbiased beliefs
on average about X, i.e., they correctly guess the expected value of X given the signal.
However, they express too much certainty that this expected value of X equals the actual
draw. This finding could not be identified from point predictions about X alone.

Nuisance neglect implies a sizeable monetary cost for subjects. The average expected
payoff for the beliefs stated in the baseline tasks is 53% higher in Broad than in Narrow
(5.86 versus 3.82 euros, p < 0.001, M-W U test).1⁵

3.1.5 Heterogeneity

Next, we examine what are typical beliefs in each condition. We characterize each stated
belief by its relative proximity to the Bayesian posterior as opposed to the nuisance neglect
posterior. Using that each observation is a distribution, we calculate the Hellinger metric
distance (Hellinger, 1909) between the stated posterior bX and the Bayesian posterior

1⁵Actual earnings for the baseline tasks also significantly differ across groups (means of 4.56 in Narrow
and 2.22 euros in Broad, p = 0.005, M-W U test), but these further depend on randomness induced by
the binarized scoring rule as well as an additional choice by subjects that affects their payoff (see Section
4.2.3).
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Table 2: Beliefs about X in baseline tasks

Signal
realization

Bayesian
posterior distribution

Stated
posterior distribution Sign test of median M-W U test

Narrow
N=72

Broad
N=72

Narrow
vs. Bayesian

Broad
vs. Bayesian

Narrow
vs. Broad

(1) (2) (3) (4) (5) (6) (7)

distribution mean
(distribution variance)

median of distribution means
(median of distribution variances)

p-value: distribution of means
(p-value: distribution of variances)

60 50 60 50 < 0.001 0.664 < 0.001
(200) (0) (200) (< 0.001) (0.011) (< 0.001)

230 237.6 230 240 < 0.001 < 0.001 < 0.001
(71.7) (0) (67) (< 0.001) (< 0.001) (< 0.001)

200 200 200 200 1.000 0.012 0.024
(200) (0) (200) (< 0.001) (0.004) (< 0.001)

80 95 80 95 < 0.001 0.508 < 0.001
(125) (0) (125) (< 0.001) (0.180) (< 0.001)

165 155 165 155 < 0.001 1.000 < 0.001
(125) (25) (125) (< 0.001) (0.180) (< 0.001)

Notes: Beliefs in Narrow and Broad by task. Each stated belief is a distribution, summarized here by its mean and
variance. The table shows medians of stated distribution means and stated distribution variances for each condition
(Columns (3) and (4)) and compares these to the mean and variance of the Bayesian posterior distribution (Columns
(5) and (6)). Column (7) shows treatment comparisons. The task order was randomized at the subject level.

P(X |S) distributions:1⁶

HB =
1
p

2

√

√

√

k
∑

i=1

�
q

bX i
−
Æ

P(X i|S = s)
�2

(4)

Given an analogous distance to the inattentive posterior distribution, HN ,1⁷ we define an
inattention score θ that captures the distance of the subjective belief distribution to the
Bayesian distribution, relative to the sum of the distances of the subjective distribution to
the inattentive and the Bayesian posterior:

θ =
HB

HB +HN
(6)

1⁶The Hellinger distance is a boundedmetric used to characterize the similarity between two probability
distributions (Bandyopadhyay et al., 2016). It is suited for the present purpose as it is a propermetric, unlike,
e.g., the Kullback-Leibler divergence, which does not satisfy symmetry.

1⁷HN is calculated as:

HN =
1
p

2

√

√

√

√

k
∑

i=1

�

q

bX i
−
q

P(X i |S̃ = s)
�2

(5)
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A Bayesian belief corresponds to θ = 0 and nuisance neglect to θ = 1. The parameter
θ is computed individually for each stated belief. First, Figure 2 provides a histogram of
empirical inattention parameters by treatment condition. This analysis pools all stated
beliefs in a treatment condition across tasks and subjects. More than 70% of beliefs in
Broad, but less 20% in Narrow can be characterized as close to Bayesian (θ < 0.1). By
contrast, about 60% of beliefs in Narrow are close to nuisance neglect (θ > 0.9), with the
remaining 20% located in between the two extremes. The vast majority of stated beliefs
are either fully sophisticated or fully inattentive to Y . This measure of inattention sug-
gests a markedly bi-modal distribution of beliefs. Second, we analyze the within-subject
heterogeneity of beliefs by counting how often each subject states a belief that is close to
Bayesian (θ < 0.1) or nuisance neglect (θ > 0.9), as opposed to a belief that corresponds
to neither of the two (θ ∈ [0.1, 0.9]). 58% of subjects in Broad but only 6% in Narrow
state all of their beliefs in line with Bayes’ rule. 44% of subjects in Narrow (but none in
Broad) exhibit nuisance neglect in all of their stated beliefs. Consequently, a share of 62%
in Broad and 50% in Narrow switch at least once between the three updating modes spec-
ified here. Kernel density estimates of the subject-level average of θ display a pronounced
peak around zero mean inattention in Broad and a less pronounced clustering of subjects
with mean inattention above 0.8 in Narrow (see Appendix Figure 6). This suggests that
while a considerable fraction of subjects is consistently inattentive, most subjects in Nar-
row exhibit some heterogeneity, with 15.5% reporting both a fully Bayesian belief and a
belief implying exact nuisance neglect at least once. Strikingly, we find that a staggering
93% of beliefs stated in rounds that followed a close-to-Bayesian belief (θ < 0.1) are also
close to Bayesian. This fraction was only slightly lower in condition Narrow (82%) than
in Broad (95%). This finding highlights the role of “insight”: once people figure out the
right strategy, they consistently apply it throughout subsequent problems. This provides
a first indication for the relevance of the mental model of cognitive solution approach.

3.2 Robustness and External Validity

The baseline study documents nuisance neglect in a specific configuration of the informa-
tion environment and experimental setup. Using further experiments we test the robust-
ness of the findings, address potential confounds and examine the generalizability of the
baseline result.
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Figure 2: Distribution of implied inattention scores by treatment condition. N=1135. Displayed are binned
histograms for the implied inattention parameter based on all beliefs stated in the five baseline tasks. Inat-
tention scores are calculated as θ = HB

HB+HN
, where HB and HN denote the Hellinger distances of the stated

belief distribution to the Bayesian posterior and the nuisance neglect posterior, respectively. A parameter
of θ = 0 corresponds to Bayesian updating. θ = 1 implies nuisance neglect.

3.2.1 Robustness and Extensions

This section summarizes a collection of robustness exercises and extensions that include
(i) additional tasks introducing various departures from the simple discrete uniform case,
(ii) a direct test of a signal anchoring heuristic, (iii) two treatments that exactly align the
elicitation procedure across conditions, (iv) a simplified version that removes the deci-
phering stage and time limits, (v) a test of a face value heuristic, and (vi) an examination
of the form of nuisance neglect across information structures. The following provides a
brief discussion of these analyses, with all details relegated to the Appendix.

Adding to the baseline tasks in Table 1, four additional tasks were presented in random
order after the baseline tasks. Highly significant treatment effects persist (p < 0.001, M-
W U tests) under continuous uniform, normally distributed, or correlated data structures,
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or a case in which the signal realization is outside of the range of X . See Appendix C.1
for the robustness task specifications and detailed results.

A potential concern is that the treatment manipulation in the baseline study not only
varies the incentive structure as postulated by the definition of a nuisance variable, but
also the elicitation procedure: subjects in Narrow only state a belief about X , whereas
subjects in Broad guess both X and Y .1⁸ To better understand the extent to which the
treatment effect is due to the difference in elicitation procedures, two additional treat-
ments are designed to obtain a 2 (incentives Narrow vs. Broad) × 2 (elicitation of: only X

vs. X and Y ) between-subjects design. We find that given an incentive structure, i.e., Nar-
row or Broad, harmonizing the elicitation protocol reduces the treatment effect by roughly
one third, while all differences in estimated inattention scores remain highly significant
(see Appendix C.3). Put differently, most of the treatment effect is driven by prediction
incentives as opposed to the elicitation procedure.

Finally, drastically simplifying condition Narrow by removing the deciphering stage
as well as all time limits induces a reduction in the implied inattention parameter (p <
0.001), but the treatment effect persists in a conservative comparison against the baseline
condition Broad which included both deciphering and time limits (p < 0.001; Appendix
C.4).

A possible explanation of nuisance neglect is that subjects use the heuristic of reporting
back the signal value, akin to exact anchoring or taking the signal at face value. Treatment
Computation tests the face value explanation by adding a simple algebraic computation
into the information structure, in such a way that it remains equally plausible to anchor on
the observed signal value. For example, instead of S = X+Y

2 , subjects receive the modified
signal S = X+Y

2 − (2 · 10) + 30. We find minimal evidence for anchoring on the observed
signal. Instead, subjects are able and willing to invert the computations, but still do not
account for Y .1⁹

Next, we complement the baseline evidence from the laboratory with online experi-
ments in a large, more heterogeneous population. We implement several design modifica-
tions for these experiments that are discussed in Appendix D. While the design of the lab
study was suitable for a sample of highly attentive student subjects, adjustments were nec-
essary to adapt this experiment to the plausibly less attentive online worker population.

1⁸This is a deliberate design choice: making a prediction in itself provides a (non-monetary) incentive
to pay attention, or constitutes a form of “cue” as studied in Section 4. Note that the information set at the
time of stating a belief is held exactly constant across treatments, so that subjects in Narrow do not have
to memorize the distribution of Y .

1⁹Further treatment details, figures and results are relegated to Appendix C.2.
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Correspondingly, the online study did not serve the purpose of an exact replication, but
instead aimed at documenting the prevalence of nuisance neglect under less controlled
conditions and a more diverse sample, and served as the basis for investigating different
features of the phenomenon.

The main finding of substantial nuisance neglect replicates in the online study. Specif-
ically, 53% of stated beliefs imply an attention parameter θ above 0.9. In addition, we
document evidence for an additional updating mode, “signal neglect” or non-updating, a
frequent finding in belief formation studies (Coutts, 2019; Henckel et al., 2018; Möbius
et al., 2014). Using additional variation in the online experiment, we make some progress
towards a characterization of the form of nuisance neglect across information structures.
Our results indicate that rather than the (possibly implicit) use of a distorted distribution
of Y or a non-Bayesian updating rule, nuisance neglect is best characterized as a strong
form of ignorance about the existence of Y : people seem to apply a modified signal struc-
ture Si that excludes Y .

3.2.2 External Validity: Nuisance Neglect in a Naturalistic Setting

While the baseline experimental paradigm provides evidence in a tightly controlled setup,
it lacks the ecological validity of real-life contexts in which people typically encounter
inference problems. To address this issue and examine the generalizability of nuisance
neglect in more naturalistic settings, we designed additional, pre-registered experiments.
This series of experiments (i) relies on more real-world contexts that subjects may have
some familiarity with, (ii) is not limited to an abstract situation that “feels like a math
problem,” (iii) leverages one application with more immediate economic relevance, and
(iv) includes a version where subjects take a simple choice rather than state a belief given
a complex scoring rule.

Design. We preserve the basic structure of the baseline experiments, with two random
variables (X and Y ) that causally affect a third variable (S), but simplify by binarizing
all three variables. We specify the base rates of as well as the causal relationships be-
tween the two generative causes (X , Y ) and the effect variable (S). Each subject took
decisions in two naturalistic contexts (see complete instructions and decision screens in
Appendix G.6). In context Earnings, a hypothetical company makes a quarterly earnings
announcement, which either surpasses or falls short of an analyst prediction. In this sce-
nario, there are two generative causes, the company’s operational performance and the
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general business climate. When the company exceeds the operational performance goal,
this causes realized earnings to surpass analyst expectations with probability 70%, irre-
spective of the business climate (see below for a discussion of how to model posterior
beliefs given such a causal structure). Conversely, when the business climate is good, this
causes realized earnings to surpass analyst expectations with probability 90%, irrespec-
tive of operational performance. Exceeding operational performance and good business
climate are independent of one another and each occur with 50% probability. Subjects
then find out that the company’s earnings actually surpassed the analyst prediction. Given
all this information, a Bayesian would infer that there is a 65% chance that the company
exceeded the operational performance goal, and a 73% chance that the business climate
was good. Similar to the baseline experiment, our main interest was in the treatment
comparison between Broad, in which subjects stated their beliefs about both operational
performance and business climate, and Narrow, in which subjects were only asked about
operational performance.

The second vignette, Restaurant, leverages a context that plausibly taps into subjects’
real-life experience. Subjects were asked to imagine having dinner at a new restaurant.
The dining experience either exceeds or fails their expectation based on similar restau-
rants. The actual restaurant quality (which is outstanding or not with equal probability)
causes the dining experience to exceed expectations with probability 95%, and good luck
that is unrelated to restaurant quality – such as a good mood, sunny weather or enjoyable
company (which happens with 50% probability) – causes an exceeding dining experience
with probability 80%. The corresponding Bayesian posterior was 71% for outstanding
restaurant quality and 65% for good luck.

Treatment conditions and outcomes. We ran a total of six between-subjects treatment
conditions that cross the main treatment manipulation (Broad vs. Narrow) with different
outcome measures: in Belief Probabilistic, subjects received all probabilistic information
that was necessary to form a Bayesian posterior similar to the baseline experiment, and
were incentivized using a binarized scoring rule. In Action, subjects took an action instead
of stating a belief. For one (in Narrow) or both (in Broad) causes, they were endowed with
$1 each and could either keep this money or bet it on the occurrence of the respective
cause. If the cause occurred, their $1 bet would be tripled, and if the cause did not occur,
the money would be lost. In Belief Simple, we replaced all numerical probability informa-
tion with verbal descriptions (e.g., 95% was described as an “extremely high” probability
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and 80% as a “high” probability) and only asked subjects to indicate which state of the tar-
get cause (in Narrow) or of both causes (in Broad) they thought was more likely, without
any monetary incentive to avoid the added complexity of a scoring rule. See all decision
screens in Appendix G.6.

The rationale behind this series of treatments is that while the first outcome variant
(Belief Probabilistic) is closest in spirit to a simplified version of the baseline experiments
and mainly adds a naturalistic cover story, the second variant (Action) removes the arti-
ficiality of stating a belief (and the corresponding complex scoring rule), and the third
variant (Belief Simple) simplifies even further by removing all explicit probabilistic infor-
mation and the incentive scheme.

Procedures and Pre-registered Predictions. The vignettes specified the likelihoodwith
which each of the causes changes the state of the effect; the so-called “causal power” (see,
e.g., Cheng, 1997). The standard BooleanNoisy-Or parameterization for non-deterministic
disjunctive interactions between causes of an effect allows us to specify the normative
equations for causal inference (for details, see, e.g., Pearl, 2014). We pre-registered two
types of predictions.2⁰ First, we predicted a treatment effect of the main manipulation,
i.e., that subjects are more likely to believe that the target cause occurred (or bet on its oc-
currence) in Narrow than in Broad. Second, we predicted that the point belief in condition
Narrow for subjects facing the Belief Probabilistic condition would be significantly higher
than the Bayesian posterior (as implied by a Noisy-Or model).21 We pre-registered a to-
tal sample of 600 completed responses across the six treatment conditions. A (pseudo-)
representative online sample of the US population was collected on Prolific in September
2021.

Results. Figure 3 illustrates the results from all six experimental conditions, separately
for each of the vignettes. We confirm both pre-registered predictions. First, we find a
treatment effect between Narrow and Broad across all six vignette-outcome pairs.22 Sec-
ond, we predicted that beliefs in Narrow significantly exceed the Bayesian benchmark for
Belief Probabilistic, which is also confirmed. Finally, we observe that Broad beliefs in Be-
lief Probabilistic are indistinguishable from the Bayesian posterior in Earnings, but not in

2⁰See https://aspredicted.org/w2qi8.pdf.
21Note that there are no Bayesian point predictions for the two other types of outcomes.
22Belief Probabilistic: one-sided t-tests yield p < 0.001 in Earnings and p = 0.007 in Restaurant. Action:

two-sample tests of proportion yield p = 0.007 in Earnings and p = 0.019 in Restaurant. Action: two-sample
tests of proportion yield p = 0.022 in Earnings and p = 0.085 in Restaurant.
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Figure 3: Results from experiments with naturalistic task framing. Participants were randomly assigned to
either state a probabilistic belief (Belief Probabilistic, N = 199), take an action by placing a bet (Action,
N = 202) or guess the realization of the focal variable (Belief Simple, N = 199). Within each outcome
group, subjects were randomly assigned to either condition Narrow or Broad. Each participant completed
both the Earnings and the Restaurant vignettes in random order. Displayed are the mean decisions and
standard errors of the mean. The sample size, the treatment effect (Narrow vs. Broad) and the deviation of
the point belief in Narrow from the Bayesian posterior in Belief Probabilistic were pre-registered.

Restaurant. We did not pre-register a prediction about point beliefs in Broad. The reason
is that there is a multitude of potential explanations for non-Bayesian point beliefs that
vary across the vignettes. For example, point beliefs are likely affected by the idiosyncratic
features of the real-life applications. In sum, this series of treatments strongly support the
external validity of the baseline experiments in more naturalistic task settings.

4 Cognitive Mechanisms: Mental Gap or Friction?

4.1 Conceptual Considerations

Research in behavioral economics has produced a collection of deviations from rationality
in information processing, many of which are studied and modeled in isolation. Under-
standing the mechanisms behind updating errors can help identify any common primi-
tives of different anomalies, potentially advancing the convergence of models (Fudenberg,
2006) and informing the design of interventions that target specific mechanisms with
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what Handel and Schwartzstein (2018) label “mechanism policies.”
Previous research classifies the sources of deviations from optimality into different

categories. We adopt the distinction between “mental gaps” and “frictions” (Handel and
Schwartzstein, 2018) here as a productive organizing structure that is representative of
other, similar classifications. First, a friction occurs if people understand a problem cor-
rectly, but do not accurately execute all necessary steps to arrive at the normatively op-
timal solution due to, e.g., computational errors, noisy processing or limited attentional
capacity. The corresponding class of models which includes rational inattention frame-
works assume that beliefs formation reflects cost-benefit considerations in the presence
of some psychological cost of processing information.

Second, a mental gap occurs if people develop an incorrect understanding of the situa-
tion to begin with, so that non-Bayesian reasoning is due to how they approach and think
about a problem given costs. A recent strand of literature in economics examines the im-
plications of misspecified mental models.23 This work builds on a prominent theme in cog-
nitive science that studies people’s mental representations, i.e., their subjective models of
a problem (Clark, 2013; Fodor and Pylyshyn, 1988; Newell and Simon, 1972; Pitt, 2018).
Misspecified subjective representations have been characterized through their automatic-
ity, i.e., they emerge quickly and effortlessly, they tend to be simple, low-complexity mod-
els, and it requires some form of cue to trigger a different representation. This notion
of default mental models is related to the intuition-based “System 1” that provides au-
tomatic, effortless responses to problems according to dual-process theories (Evans and
Stanovich, 2013; Kahneman, 2003). Dual-process theories also feature the idea that Sys-
tem 1 override by the deliberate, effortful System 2 does not occur automatically but
requires situational cues (Kahneman, 2003; Stanovich and West, 2008).

This Section aims to shed light on whether nuisance neglect is better characterized as
rooted in amental gap or a friction. If a mental gap is at the source of nuisance neglect, the
bias should respond to attentional manipulations that alter how a subject thinks about the
task. If nuisance neglect reflects a friction, its prevalence should depend on the relative
size of the benefits and cognitive costs associated with an updating problem.

In the following we present a sequence of analyses that aim to disentangle a mental
gap from a friction explanation. Friction explanations have been widely studied in the

23See, e.g., Barron et al. (2019); Bohren (2016); Bohren and Hauser (2019); Bushong et al. (2019);
Enke (2020); Enke and Zimmermann (2019); Esponda and Pouzo (2016); Eyster and Rabin (2014); Gabaix
(2014); Gennaioli and Shleifer (2010); Hanna et al. (2014); Heidhues et al. (2018); Schwartzstein (2014);
Spiegler (2016).
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literature, which includes psychometric designs used the in recent economics literature
(e.g., Caplin et al., 2020). Our primary focus is on testing for the presence of a mental gap,
as work on this topic has received comparably less attention in previous work (but there
are exceptions, e.g., Enke, 2020). Note that the objective is to test whether a mental gap
is at the source of the bias in the experimental setup under consideration. It is beyond
the scope of this paper to characterize what mental models look like in general.

We proceed in two steps. First, in Section 4.2, we test for a mental gap explanation
while trying to hold constant the costs and benefits associated with nuisance neglect.
Second, in Section 4.3, we briefly outline our findings from tests of whether nuisance
neglect responds to its associated costs while plausibly holding the mental representation
that people form constant.

4.2 On Mental Gaps

In the following, we present three tests of a mental gap: an explicit hint at the nuisance
variable, an implicit nudge for subjects to reconsider their problem representation, and
an analysis of subjects’ awareness about their nuisance neglect. Appendix Table A gives
an overview of all experimental treatments.

4.2.1 The Effect of a Hint

Treatment Hint only provides incentives for estimating X (similar to condition Narrow),
but adds a contextual cue that shifts attention to the nuisance variable. On every elicitation
screen, subjects see a statement that reads “Also think about the role of Y .” Note that the
hint does not provide direct instructions on how to solve the updating problem. If subjects
are aware of the relevance of Y in the updating problem, this hint should have no effect.
Moreover, the hint itself neither changes the cognitive costs associated with accounting
for Y in processing the signal, nor the incentive for accuracy.

We conduct online experiments on MTurk following the procedures described in Sec-
tion D and using the task specifications listed in Appendix Table 10. The results of treat-
ment Hint and other mechanism treatments are summarized in Figure 4. For each treat-
ment, we pool data from all five updating tasks and display the fraction of beliefs that
can be characterized as Bayesian, nuisance neglect, and signal neglect – a posterior belief
that equals the prior –, as well the remaining fraction of beliefs that does not correspond
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to any of these updating rules.2⁴ We compare the change in the prevalence of different
updating rules relative to the baseline treatment.

Figure 4 documents a substantial and highly significant decrease in the fraction of
nuisance neglect by almost two thirds upon adding the hint (χ2 test, p < 0.001). At
the same time, Bayesian updating significantly increases from a fraction of below 30%
to roughly 50% (p < 0.001). Without changing monetary incentives or cognitive costs,
the hint has a substantial effect on updating, in support of the idea that subjects are in
principle willing and able to update in Bayesian fashion, but fail to notice the need to
account for Y to begin with.

41%28%16%15% 14%51%23%12% 25%37%13%25% 43%35%4%18%

Baseline Hint Enforced Deliberation High Stakes

0%

20%

40%

60%

Nuisance neglect

Bayesian

Signal neglect

Other

Figure 4: Fraction of stated beliefs in line with nuisance neglect, Bayesian updating and signal neglect, as
well as the remaining share of beliefs, separately for the baseline online experiment (see tasks specifications
in Appendix Table 10) and three mechanisms treatments discussed in Sections 4.2.1 (Hint), 4.2.2 (Enforced
Deliberation) and 4.3 (High Stakes). All stated beliefs, pooled across updating tasks. Error bars indicate
standard errors of the proportion. Stated beliefs are classified as Bayesian if they are within+/-1 percentage
points of the Bayesian posterior, and as nuisance neglect or signal neglect if they exactly corresponded to
stating X = s or X = µX , respectively.

2⁴Specifically, stated beliefs are classified as Bayesian if they fall into a window of +/-1 percentage
points of the Bayesian posterior, and as nuisance neglect or signal neglect if they exactly correspond to
stating X = s or X = µX , respectively.
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4.2.2 The Effect of Enforced Deliberation Time

The external hint directs attention to the neglected part of the task. Do subjects notice the
nuisance variable on their own if they are nudged to re-consider their solution strategy?

In condition Enforced Deliberation, subjects face a 30-second waiting time on each
elicitation screen, during which they cannot enter a guess or submit the page. The input
fields are only activated after that time is up. This variant of enforced waiting time aims
at having people deliberate their approach towards solving the problem – rather than the
execution of the subsequent computations –, potentially leading them to recognize the
need to account for Y . Figure 4 shows that this is the case: The share of nuisance neglect
in Enforced Deliberation falls substantially from 41% to 25% (p < 0.001), roughly by half
as much as the effect size of a hint.

This result is consistent with an interpretation according to which subjects’ solution
strategy may be divided into two successive steps: first, parsing the problem description
into a mental problem representation, and second, implementing a solution based on that
representation. Noticing the neglect may require that subjects specifically reconsider their
problem interpretation, rather than their downstream implementation.

4.2.3 Awareness of Nuisance Neglect

The effects of a hint and enforced deliberation demonstrate that even minimal interven-
tions that bring attention to Y suffice to substantially reduce nuisance neglect. This indi-
cates that subjects initially fail to think about about Y and are thus unaware about com-
mitting an error. We provide a correlational analysis of this lack-of-awareness hypothesis
by measuring confidence in stated beliefs. If subjects who commit nuisance neglect are
aware of their distorted beliefs, they will be less confident than subjects who form opti-
mal beliefs. If instead the simplification of ignoring Y occurs outside of the agent’s con-
trol, subjects may deliberately execute the subsequent computations and still exhibit high
confidence in their beliefs. In stage Confidence that directly follows the belief tasks in the
baseline laboratory experiment (Section 3), subjects indicate their willingness-to-accept
(WTA) to give up the uncertain payoff associated with each previously stated belief. They
are again presented with each individual updating task together with their own stated
belief. Participants are asked to indicate whether they prefer to be paid out for the accu-
racy of their belief or receive a certain monetary amount. They make this binary decision
for different fixed amounts ranging from 0 euros to 6 euros in increments of 0.25 euros.
These choices are presented using the multiple-price list method, which Andreoni and
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Kuhn (2019) argue is particularly easy to understand for subjects. If the task is randomly
selected for payout in the end, a subject’s decision in one of the rows of the list is imple-
mented. Note that the Confidence tasks (i) have no time limit such that subjects could
freely rethink their stated belief, and (ii) the subjective valuation in each task provides an
incentivized measure of confidence in the belief distribution itself, beyond the variance
of the stated belief distribution.2⁵

Table 3 shows results from regressions in which the dependent variable is the subjec-
tive valuation of a stated belief, i.e., the minimal certain amount preferred over a having
the stated belief paid out. A higher value corresponds to higher confidence in a stated be-
lief. Columns (1) to (3) show that more inattentive beliefs are not significantly associated
with lower reservation prices. Even after reconsidering the updating problem and their
own belief, subjects fail to recognize the necessity to account for Y and are equally confi-
dent in their own guess. Reassuringly, the variance of the indicated belief distribution is
negatively correlated with confidence. While these analyses are correlational in nature,
we exploit the causal variation in θ generated by the treatment manipulation (between
conditions Narrow and Broad) in a regression reported in column (4) of Table 3, which
uses treatment status as an instrument for inattention θ . The two-stage least squares pro-
cedure yields a similar coefficient estimate, again indicating no significant relationship
between inattention and confidence. Restricting the sample to beliefs stated in Narrow
(column (5)), we again find no relationship between the valuation of a stated belief and
implied inattention.

Taking stock, the effectiveness of simple attentional manipulations and subjects’ un-
awareness of nuisance neglect implied by the confidence measure points to a behavioral
mechanism related to how subjects mentally construe the updating problem. Moreover,
the findings suggest that selective processing of problem features at least partly depends
on factors that are unrelated to the cost of information processing.

Result 2. Nuisance neglect is reduced by simple attentional cues to Y .

2⁵The WTA, however, depends on the curvature of the utility function, which motivates robustness anal-
yses below that take into account subjects’ risk attitudes.
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Table 3: Determinants of confidence in stated beliefs

Dependent variable: Confidence: Valuation for stated belief

Condition: Narrow and Broad Narrow

Estimation method: OLS IV OLS

(1) (2) (3) (4) (5)

0 if Broad, 1 if Narrow -0.497 -0.499 -0.104
(0.316) (0.317) (0.300)

Inattention θ -0.808 -0.801 -0.369 -0.566 -0.487
(0.509) (0.508) (0.512) (0.429) (0.436)

Treatment dummy * Inattention θ 0.714 0.705 0.006
(0.620) (0.619) (0.612)

Variance of belief distribution -0.000*** -0.000* -0.000* -0.000
(0.000) (0.000) (0.000) (0.002)

Willingness to take risks 0.555*** 0.557*** 0.645***
(0.134) (0.134) (0.175)

Constant 4.550*** 4.555*** 3.694*** 3.689*** 3.011***
(0.180) (0.181) (0.637) (0.619) (0.613)

Task fixed effects Yes Yes Yes
Additional controls Yes Yes Yes

R2 0.02 0.02 0.13 0.13 0.15
# Observations 1135 1135 1135 1135 607

Notes: Least squares and IV regressions. Inattention scores are calculated as θ = HB
HB+HN

, where
HB and HN denote the Hellinger distances of the stated distribution to the Bayesian posterior and
the nuisance neglect posterior (as defined in Section 3), respectively. In column (4), implied inat-
tention scores θ are instrumented with an indicator for treatment status (1 if Narrow, 0 if Broad).
The additional controls include gender, age, income and task-fixed effect. Robust standard errors
clustered at participant level in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.

4.3 On Cost-Benefit Considerations

Why does the attribution error in inference arise even though it creates a substantial mon-
etary loss? One explanation is that it reflects a simplification strategy that economizes on
cognitive resources. A more parsimonious problem representation arguably draws less
cognitive capacity, and optimization within a simpler model may allow a quicker and less
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effortful solution. The avoidance of cognitive effort has a been a long-standing theme
in cognitive science that has led to the notion of humans as “cognitive misers” or “mo-
tivated tacticians” (Fiske and Taylor, 2013; Stanovich, 2009), with some arguing that
most biases in judgment and decision-making reflect effort-reduction strategies (Shah
and Oppenheimer, 2008). In economics, a growing literature shows that simplifications
and inattention can reflect rational, constrained optimization in the presence of cognitive
costs or capacity limitations (Caplin and Dean, 2015; Gabaix, 2014; Sims, 2003; Wieder-
holt, 2010). A common prediction of this class of models is that deviations from rationality
respond to their associated cost. If nuisance neglect is driven by underlying cost-benefit
considerations – explicit or implicit, i.e., without the agent’s awareness –, then its preva-
lence should respond to the cognitive costs and the expected benefits of optimal belief
updating.

Next, we outline the main findings from examining the effect of variation in the costs
of nuisance neglect on its occurrence within the paradigm of this experiment. Put differ-
ently, we focus on the sensitivity of updating patterns to changing costs.2⁶ All details are
relegated to Appendix E.

In treatment High Stakes, the available prize is raised five-fold relative to the base-
line online experiment. Under higher incentives, effort as measured by response times
increases significantly, both overall and within each subgroup (pairwise t tests, all p <

0.001). We find that the prevalence of Bayesian updating increases statistically signifi-
cantly, but the share of nuisance neglect remains roughly constant. In fact, the increase in
Bayesian updating occurs fully at the expense of signal neglect. This means, given higher
incentives, subjects try harder, but that only affects non-updating, reducing the fraction
of subjects that ignore the signal altogether. On average, higher stakes do not reduce nui-
sance neglect, however. Compellingly, a tenfold increase of the stake size in the laboratory
experiment leads to a similar pattern, see Appendix Section E.4. This indicates that psy-
chic costs, cognitive miserliness, laziness or effort reduction may explain non-updating,
but have limited explanatory power for nuisance neglect.

In Appendix E.5, we investigate whether the specific monetary cost associated with
nuisance neglect affects its prevalence. In economic models of rational belief formation,
the likelihood of committing a specific error depends on its expected cost in utility terms
(Caplin and Dean, 2015; Gabaix, 2014; Wiederholt, 2010). On that account, the preva-

2⁶While the responsiveness of errors to their cost is a central, testable prediction of a friction explanation,
a lack of responsiveness does not imply that a mental gap may not in itself be rooted in some form of
psychological cost.
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lence of nuisance neglect should vary systematically with its expected loss of accuracy in
a given information environment. We vary the expected cost of nuisance neglect using
variations of the signal-to-noise ratio and the directional bias implied by the bias. The
results suggest that the prevalence nuisance neglect does not systematically respond to
these variation in its expected costliness.

5 Conclusion

A collection of previous empirical findings implies that misattribution is a pervasive fea-
ture of human decision making. The extant literature by and large treats these patterns as
unconnected phenomena. This paper contributes in two ways. First, by cleanly document-
ing the neglect of nuisance variables in both tightly controlled and naturalistic environ-
ments, it provides a potential conceptual link between various attribution errors. Because
people tend to narrowly focus on explanations that appear subjectively most relevant,
they disproportionately assign casual power to these explanations and neglect alternative
causes. Second, by studying the precise behavioral mechanisms underlying misattribu-
tion, this paper extends the recent literature on updating problems given many pieces of
information to attribution problems where agents face a single piece of information. Our
conclusion that a similar mechanism of misspecified mental representations may be at
play in both problem classes sheds light on the primitives of a theoretical framework that
may successfully capture different types of anomalies.

Limitations and directions for future work. While the paper provides controlled evi-
dence on the simplest type of attribution problem, it has a number of limitations. First,
the combined evidence from over twenty treatments in the abstract and naturalistic
paradigms is confined to static updating tasks with two random variables. A natural ques-
tion is how the neglect of alternative causes extends to sequential updating tasks, more
complicated signal structures and environments with more than two variables. Second,
the presented evidence from the naturalistic paradigm remains suggestive. This type of
extension that transfers structured updating problems to real-world applications merits
more work in the future and can help shed light on the relevance and generalizability of
belief updating patterns such as nuisance neglect. Third, while this paper concludes that
updating errors here may plausibly be due to a mental gap, it does not claim to character-
ize in any generality when a mental gaps occurs, why mental gaps arise and what they
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look like in different contexts.
A broader challenge for research on bounded rationality is whether two seemingly

conflicting directions in the literature can be reconciled. Evidence on incomplete men-
tal models tends to favor overreaction and “jumping to conclusions,” which is broadly in
line with the heuristics and biases program and classical work by Kahneman and Tver-
sky. This paper falls into this category. A separate strand of the literature highlights the
role of noise and imprecision in human cognition (see Woodford, 2019, for an overview).
Noisy processing motivates a class of models that predominantly predict insensitivities
and underreaction, which is supported by mounting evidence on both lower-level percep-
tual processes and higher-level reasoning (Enke and Graeber, 2022a,b; Frydman and Jin,
2019; Gabaix and Laibson, 2017; Khaw et al., 2019; Steiner and Stewart, 2016). Future
work may help shed light on whether these forces operate simultaneously or apply in
distinct environments, and if so what characterizes their respective scope of application.
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ONLINE APPENDIX
This appendix contains an overview of all treatment conditions (Section A), additional

information and results on the baseline laboratory experiments (Section B), the robust-

ness treatments (Section C) and the online experiments (Section D), additional details

and results on the mechanisms treatments (Sections E and F) as well as all experimental

instructions (Section G).
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A Overview of Treatments

Table 4: Overview of laboratory treatments

Condition Description Covered in

Baseline experiment:

Narrow and Broad

(Elements of baseline experiment in respective order be-

low)

Baseline Tasks 5 updating tasks in random order. X and Y follow in-

dependent discrete uniform distributions with outcome

spaces smaller than 10. The information is the mean or

the sum of the draws.

Appendix B

Robustness

Tasks

5 updating tasks in random order. Data are correlated,

drawn from a larger sample space, discretely normally

distributed, or the information is outside of the range

of X .

Appendix C.1

Bonus Task 1 surprise task with similar configuration to baseline.

Within each condition, subjects are re-randomized and

face either the same expected incentive size as before,

or tenfold incentives.

Main text

Confidence For each baseline and robustness problem, subjects in-

dicate their valuation for their stated belief using a

multiple-price list method.

Appendix E.2

Switch-role 2 tasks with similar configuration as baseline, but sub-

jects face incentives from opposite treatment condition.

That means Narrow is paid for X and Y , while Broad

paid for X only.

Appendix E.3

Computation Identical to Narrow baseline, except that a simple, task-

varying algebraic calculation is added to the informa-

tion structure (e.g., “the mean +20− 30”).

Appendix C.2

Simplification Identical to Narrow baseline, but deciphering stage and

all time limits removed.

Appendix C.4
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Condition Description Covered in

Narrow with joint

elicitation

Identical to Narrow baseline, but subjects indicate the

joint distribution of X and Y (while only X is paid for).

Appendix C.3

Broad with sequen-

tial elicitation

Identical to Broad baseline, but subjects indicate the

marginal distributions of X and Y in sequential order,

such that the first screen is identical to Narrow baseline.

Appendix C.3

Hint Identical to Narrow baseline, but subjects receive a re-

minder on the elicitation screen, stating “Also think

about the role of Y ”.

Appendix E.1

Feedback Identical to Narrow baseline, but subjects observe the

actual draw of X after stating their guess.

Appendix F.4

Computation with

feedback

Identical to Computation, but subjects observe the ac-

tual draw of X after stating their guess.

Appendix F.5

Computational feed-

back

Identical to Computation with feedback, except that the

computation is added to the feedback instead of the in-

formation.

Appendix F.6

Imperfect feedback Identical to Feedback, but subjects receive the true draw

as feedback only with 80% probability, while seeing an-

other value with 20% probability.

Appendix F.7
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Table 5: Overview of online treatments

Condition Description Covered in

Baseline experiment

(Narrow only)

5 updating tasks in random order (Table 8). X and Y

follow independent distributions. Subjects only state a

mean posterior belief about X . No deciphering stage.

Main text

Baseline for mecha-

nisms experiments

5 updating tasks in random order (Table 10) followed

by one confidence task in which subjects indicate their

WTA for a stated belief. Otherwise identical to online

baseline experiment.

Main text

High Stakes As mechanism baseline with fivefold incentives. Main text

Hint As mechanism baseline, but additional hint: “Also think

about the role of Y ”.

Main text

Hint and High Stakes Combination of treatments Hint and High Stakes Appendix

Deliberation time As mechanism baseline, 30-second waiting time en-

forced before input forms activate and page can be sub-

mitted.

Main text

Deliberation and

High Stakes

Combination of treatments Deliberation Time and High

Stakes

Appendix

Form of Nuisance Ne-

glect

10 updating tasks in random order (Table 9). Identical

to baseline online experiment but different information

structures to analyze different candidates for the belief

formation rule under nuisance neglect.

Main text and

Appendix D.1

Signal-to-Noise Ratio 7 updating tasks in random order. Identical to baseline

online experiment but different information structures

(Table 12). The signal-to-noise ratio is varied between

tasks.

Main text

Directional Bias 5 updating tasks in random order. Identical to baseline

online experiment but different information structures

(Table 13). All elements of the information structure are

kept fixed across tasks except the mean of Y .

Main text
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B Laboratory Experiments

B.1 Sequence of Events in Updating Tasks

• Learn joint prior 
distribution of random 
numbers X and Y.

• Learn signal structure: 
sum or average, 
depending on task.

• Receive encrypted signal,
i.e. a sequence of letters.

• Decipher signal using 
algorithm in instructions.

• Indicate full posterior 
distribution:
- Narrow: Marginal 

distribution of X.
- Broad: Joint distribution 

of X and Y.

Figure 5: Timeline of updating task in laboratory experiment.

B.2 Consistency of Attention Across Tasks

In this section I examine how consistently inattentive or consistently Bayesian subjects

behave across tasks. Figure 2 pools stated beliefs from all subjects. But do individuals

exhibit a stable level of attention? Figure B.2 shows kernel density estimates of subject-

level mean inattention.While there is a strong clustering of subjects in the Broad condition

who always form beliefs that reflect average inattention of zero, there are no pronounced

clusterings in the Narrow treatment – one at each end of the attention spectrum – as could

be expected from Figure 2. Instead, there is a smaller peak at mean inattention values

of between 0.8 and 1. Indeed, we find that many subjects in the Narrow condition form

close to Bayesian beliefs in some tasks, and close to fully inattentive beliefs in other tasks.

15.5% of subjects in Narrow indicate both a fully Bayesian and a fully inattentive belief

at least once. This may suggest that a subject’s degree of attention to Y varies across

situations to some extent, even for largely identical updating contexts.
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Figure 6: Subject-level mean of inattention to Y . N=144. For each subject I calculate the mean inattention
in the five baseline tasks. The curves show kernel density estimates for each treatment (both N=72). A
parameter of θ = 0 is consistent with Bayesian updating. θ = 1 means complete inattention. Epanechnikov
kernel with bandwidth 0.1.

C Robustness Treatments

C.1 Task Variations

First, moving toward a continuous data structure arguably increases the complexity of

the inference problem and pushes the median subject in Broad away from the Bayesian

benchmark. Second, normal instead of uniform data appears to have a similar effect of

adding complexity in condition Broad. Third, a signal value outside of the range of X

directly raises subjects’ attention to the issue of nuisance neglect in Narrow and leads to

an increased share of Bayesian beliefs. However, a substantial fraction of subjects instead
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jump to closest value in the support of X . Fourth, if X and Y are correlated instead of

independent, the median subject in Narrow displays lower inattention. One explanation

is that subjects accommodate the additional incentive to attend to Y that is induced by

the correlation. At the same time, the presentational format of the distributions changes

in this task to illustrate the correlation, which plausibly affects subjects’ perception of the

problem and so this task allows no definite conclusion.

Table 6: Overview of robustness tasks

Task Sample space X Sample space Y Signal type Signal value

Correlated data (r=0.7) {95, 96, . . . , 104,105} {−15,−14, . . . , 14,15} (X + Y )÷ 2 104

Larger sample space (> 10) {190, 191, . . . , 209,210} {180,181, . . . , 219,220} (X + Y )÷ 2 208

Discrete normally distributed numbers {170, 180, . . . 220, 230} {−50,−40, . . . 40, 50} X + Y 220

Signal out of X range {240, 241, . . . , 259,260} {−15,−14, . . . , 14, 15} X + Y 230

Notes: This table provides an overview of the four robustness belief tasks. The distributions of X and Y as well as the

signal structure are identical in both treatment conditions. X and Y were independently drawn from two discrete uniform

distribution, i.e., every indicated outcome was equally likely.

Table 7: Median inattention in robustness tasks

Task Median inattention θMdn Mann-Whitney U test

Narrow

N=72

Broad

N=72
(p-value)

Correlated data (r=0.7) 0.59 0.00 < 0.001

Larger sample space (> 10) 1.00 0.33 < 0.001

Discrete normally distributed numbers 0.44 0.27 < 0.001

Signal out of X range 0.49 0.17 < 0.001

Notes: This table displays group medians of implied inattention parameters by treatment condition for four additional

belief formation tasks. Inattention is calculated as θ = HB
HB+HN

, where HB and HN denote the Hellinger distance of

the subjective distribution to the Bayesian posterior and the inattentive posterior distribution, respectively. Task order

was randomized within each of the two blocks. 72 subjects participated in each condition.
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C.2 Face Value Heuristic and Anchoring

In treatment Computation, a simple algebraic computation is added on top of the signal

structure. The resulting signals provided in the five baseline tasks are “average of X and

Y minus (3 · 5) plus 35”, “sum of X and Y plus (2 · 10) minus 30”, “sum of X and Y plus

40 minus (4 · 5)”, “average of X and Y minus (8 · 5) plus 10”, and “average of X and Y

plus (3 · 5) plus 10”.

The computations are chosen in such a way that anchoring on the signal value re-

mains equally plausible. If subjects apply a simple face value heuristic, they should ignore

both the the computation and the variation of Y . Figure 8 shows raw beliefs in condition

Computation, including the initial value of the signal and the signal realization after ac-

counting for the computation. There is limited evidence for anchoring on the signal value.

Subjects do not appear to take the signal at face value per se: in condition Computation,

they consistently account for the computation and then still neglect Y leading to nuisance

neglect.
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C.3 Elicitation Procedure
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Narrow with joint elicitation Broad with sequential elicitation

Figure 9: Subject-level mean of inattention to Y in four conditions. Based on N=216. For each subject I
calculate the mean inattention in the five baseline tasks. The curves show kernel density estimates for each
treatment (NarrowN=72, BroadN=72, Narrow with joint elicitationN=24, Broad with sequential elicitation
N=48). A parameter of θ = 0 is consistent with Bayesian updating. θ = 1 means complete inattention.
Epanechnikov kernel with bandwidth 0.1.

In treatments Narrow and Broad, prediction incentives are different, but the elicitation

method also differs. InNarrow, subjects only indicate themarginal distribution of X , while

in Broad, subjects indicate the joint distribution of X and Y . To test whether treatment

effects are driven by this difference in what is elicited, I design two additional treatments.

In Narrow with joint elicitation, only the prediction of X is incentivized (as in Narrow) but

the joint distribution is elicited exactly as in Broad (on a single screen). In Broad with

sequential elicitation, guesses of both X and Y are incentivized (as in Broad), but now

the subject first indicates the marginal of X, and then indicates the marginal of Y on a
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separate screen. This way, the first screen (for the marginal of X) is exactly identical to

Narrow. Figure 9 plots kernel density estimates of the within-subject mean of inattention

in the five belief tasks for all four treatments. Mean inattention in the four treatments is

0.25 (Broad), 0.34 (Broad with sequential elicitation), 0.47 (Narrow with joint elicitation),

and 0.57 (Narrow). These findings imply that the treatment effect is not an artifact of

different elicitation methods. Harmonizing the elicitation procedure somewhat reduces

the effect in the predicted direction, but prediction incentives as such have a distinct effect.

C.4 Simplification
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Condition Narrow
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 Narrow without deciphering and time limit

Figure 10: Implied inattention to Y in three conditions. Based on 1,944 stated beliefs. The curves show
kernel density estimates for each treatment (Narrow N=864, Broad N=864, Simplification N=216). A
parameter of θ = 0 is consistent with Bayesian updating. θ = 1 means complete inattention. Epanechnikov
kernel with bandwidth 0.1.
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To study the role of complexity in the experimental setup, an additional condition dras-

tically simplifies the experimental procedure by removing the deciphering stage as well

as all time constraints. In this treatment, subjects are paid to predict X as in Narrow, but

they do not have to decipher the signal and have unlimited time to indicate their guess.

Effectively, they are given the distributions of X and Y, and immediately see the value of

the signal. We find a statistically significant reduction in inattention relative to Narrow

in this case (p = 0.00). At the same time, inattention remains far higher than in Broad

(p = 0.00). Mean inattention is 0.57 in Narrow, 0.40 in Simplification, and 0.25 in Broad.

Also, there is somewhat reduced bunching at fully inattentive and fully Bayesian beliefs.

Considerable simplifications improve predictions, but do not eliminate the effect of Nar-

row incentives. Figure 10 plots kernel density estimates of the distribution of inattention

parameters in Simplification together with Narrow and Broad for reference.

A possible explanation of nuisance neglect is that subjects use the heuristic of reporting

back the signal value, akin to exact anchoring or taking the signal at face value. Treatment

Computation tests the face value explanation, under which the observed bias does not

reflect the specific neglect of Y , but a form of extreme simplification strategy. Treatment

Computation is identical to Narrow, but adds a simple algebraic computation into the

information structure, in a way that it remains equally plausible to anchor on the observed

signal value. For example, instead of S = X+Y
2 , subjects receive the modified signal S =

X+Y
2 −(2·10)+30. We findminimal evidence for anchoring on the observed signal. Instead,

subjects are able and willing to invert the computations, but still do not account for Y .2⁷

Computed inattention scores for beliefs in Computation are indistinguishable fromNarrow

(p = 0.37, M-W U test), and significantly different from Broad (p < 0.001). This suggests

that nuisance neglect reflects a specific error in probabilistic reasoning rather than mere

anchoring on the signal value.

2⁷Further treatment details, figures and results are relegated to Appendix C.2.
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D Online Experiments

I complement the baseline evidence from the laboratory with online experiments for two

reasons. First, I seek to replicate nuisance neglect in a large, more heterogeneous popula-

tion and under less controlled choice conditions. While a lack of attention and motivation

among online participants compared to laboratory subjects can be a matter of concern,

online experiments can help to establish the robustness and generalizability of attention-

related phenomena in more distracting and ecologically valid environments. All online

experiments are conducted on Amazon Mechanical Turk (Mturk), which is widely used in

recent work in experimental economics (DellaVigna and Pope, 2018; Martínez-Marquina

et al., 2019). Second, the online platform allows to run multiple treatment variations with

a large number of participants, which is difficult using laboratory samples (Robinson et

al., 2019).

I implement four design modifications relative to the laboratory study. First, subjects

do not have to indicate a full posterior distribution but are incentivized to state the mean

of their posterior belief, substantially simplifying the elicitation procedure of the labora-

tory study. Second, X and Y are drawn from distributions with a larger sample space. The

baseline task specifications are reported in Appendix Table 8. Third, there is no decipher-

ing stage preceding the belief elicitation. Fourth, in the online study, X and Y are drawn

by the computer at the individual level instead of jointly for all subjects. All design and

procedural detail as well as detailed results are reported in Appendix D.

The main finding of substantial nuisance neglect replicates in the online study. Specif-

ically, 53% of stated beliefs imply an attention parameter θ above 0.9. In addition, I

document evidence for an additional updating mode, “signal neglect” or non-updating, a

frequent finding in belief formation studies (Coutts, 2019; Henckel et al., 2018; Möbius et

al., 2014).2⁸ The replication of nuisance neglect in the online study motivates that further

experiments in Sections 4 and 4.3 are conducted online instead of in the laboratory.

2⁸Non-updating could not be unambiguously identified in some tasks of the laboratory study due to the
elicitation of belief distributions rather than point beliefs and the use of uniform data structures.
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Procedures. I conduct incentivized experiments on Amazon Mechanical Turk (MTurk),

an online labor marketplace frequently used for experimental economics research. To

qualify for participation, MTurk workers have to be residents of the U.S. and of legal age,

have an overall approval rating of more than 95%, and have successfully completed more

than 100 assignments on MTurk. Workers are paid 0.5 dollars for participation and can

earn up to 3 dollars for their performance on the guessing task. They play five rounds

in randomized order. An example of the urn-based representation of distributions is re-

produced in Appendix Figure 35. One round is randomly selected for payment in the

end, and the payoff is determined based on a quadratic scoring rule.2⁹ In the online ex-

periments, all subjects are paid to predict X only, analogous to condition Narrow in the

laboratory experiments. 131 subjects participated in the online baseline experiments for

an average payment of 1.7 dollars. Completion of the study took 13 minutes on average.

It was implemented using oTree (Chen et al., 2016).

Table 8: Online baseline tasks

X Y I

N (100, 100) N (0,100) X + Y
N (100, 100) N (0,400) X + Y
N (100, 400) N (0,100) X + Y
U [75, 76, . . . , 125] U [−25,−24, . . . , 25] X + Y
U [75, 76, . . . , 125] U [90, 91, . . . , 110] X+Y

2

Notes: This table provides an overview of the five baseline belief tasks in the
online experiment. For all normally distributed variables, the support was dis-
cretized to integers, truncated at µ − 50 and µ + 50 and then the distributions
were scaled such that the they have unit probability mass.

Baseline Results: Online Study. Figure 11 shows all stated beliefs together with the

signal realizations observed in the five baseline tasks. It further highlights which stated

beliefs correspond to nuisance neglect, signal neglect and Bayesian updating.

2⁹The monetary payoff (in US dollars) is calculated as:

max
�

0 , 3− 0.2 · (guess of X − draw of X )2
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There is evidence for each of those three updating rules. In all tasks at least 60% of

stated beliefs are exactly in line with these three updatingmodes. Among the threemodes,

Bayesian updating and nuisance neglect are observed with roughly similar frequency,

while signal neglect occurs to a lesser extent.

X = U{75, 76, ..., 125}
Y = U{−25, −25, ..., 25}
S = X+Y

X = U{75, 76, ..., 125}
Y = U{90, 91, ..., 110}
S = (X+Y)/2

X = N(100,100)
Y = N(0,100)
S = X+Y

X = N(100,100)
Y = N(0,400)
S = X+Y

X = N(100,400)
Y = N(0,100)
S = X+Y

80 100 120 80 100 120

80 100 120

80

100

120

80

100

120

Signal

Guess 
 about X

 Bayesian posterior Nuisance neglect Signal neglect

Figure 11: Beliefs in baseline tasks of online experiments. N=131 in each task. Each dot corresponds to one
stated belief. The three red lines indicate the Bayesian benchmark, nuisance neglect, and signal neglect.

To illustrate the degree to which beliefs are clustered on these three updating modes,

Figure 12 plots kernel density estimates for the task in the upper left corner of Figure

11. In this task, X ∼ N (100,100), Y ∼ N (0,100), and S = X + Y . The stated belief

that corresponds to a Bayesian posterior in this case is 100 + λ · (s − 100) where λ =
σ2

X

σ2
X+σ

2
Y
= 1

2 . Intuitively, since X and Y have equal variance, a normatively optimal guess

of X attributes half of s’s deviation from the expected value of 100 to X . Signal neglect,

in turn, corresponds to a belief equal to the prior of X , E[X ] = 100. This is equivalent to

assigning none of the deviation of s from its expected value to X . In fact, with m denoting

a subject’s stated guess, the empirical equivalent of λ can be backed out as λ̂= m−100
s−100 . In
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the case of signal neglect with m= 100, λ̂= 0. Finally, if people commit nuisance neglect

they state m= s, implying λ̂= 1.

Figure 12 provides three insights. First, most of the probability mass is centered on

the three updating modes. Second, nuisance neglect is the most frequent mode in this

task, and signal neglect the least frequent one. Third, as indicated by the rug plot on the

right, most people who neglect Y (λ̂= 1) or the information (λ̂= 0) do so exactly. By con-

trast, people are more dispersed around the Bayesian benchmark (λ̂ ≈ 0.5), presumably

because it is harder to compute the Bayesian posterior exactly.

●

−0.5
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0.5
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0.2 0.5 0.8

λ

λ̂

Figure 12: Kernel density plot for beliefs stated in a task where X ∼ N (100,100), Y ∼ N (0,100), and
S = X +Y . In this task, the Bayesian belief corresponds to 100+λ ·(s−100)where λ= σ2

X

σ2
X+σ

2
Y
= 1

2 . For each

stated belief, the empirical counterpart of λ is calculated as λ̂ = m−100
s−100 . The plot documents three distinct

clusters at λ̂ = 0 (signal neglect), λ̂ = 1 (nuisance neglect) and around λ̂ = 1
2 (Bayesian posterior.) Based

on N=131. Epanechnikov kernel with bandwidth 0.07.

In the experimental settings studied in this paper, beliefs are clearly too heterogeneous

to be adequately described by a single representative updating rule. Average beliefs mask

the underlying structure. At the same time, there is little randomness in stated beliefs.

Instead, most beliefs accord to a discrete set of three updating modes. They align exactly
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with one of these modes, and there is virtually no mixing between the modes, i.e., people

do not seem to choose combinations of updating rules.

The main finding of substantial nuisance neglect in the laboratory replicates in the

online study. In addition, I document evidence for an additional updating mode, signal

neglect or non-updating, which is in line with typical findings in studies on belief for-

mation. Consistent with the results reported on within-subject heterogeneity of updating

rules in the laboratory experiment (Section 3.1.5), We find that 37% ob subjects report all

of their belief in line with nuisance neglect, 12% always exhibit signal neglect and 8% are

always close to Bayesian. Correspondingly, 47% switch at least once between updating

modes. Again in line with the laboratory results, we find that a large fraction of beliefs

(73%) stated following a belief that can be characterized as close-to-Bayesian was also

close-to-Bayesian, indicating the relevance of “insight.”

The baseline online study again builds on the working assumption from Section 3.1.2

that the form of nuisance neglect can be characterized as people (implicitly) using an

alternative, simplified signal structure. I test this assumption in the following Section.

D.1 Characterizing the Form of Nuisance Neglect Across Information

Structures

The baseline experiments implement the working assumption from Section 3.1.2 that

inattention to Y may be characterized as people taking the signal as fully revealing about

X , i.e., X = s. Note that some of the evidence so far can be explained in alternative ways:

subjects might, for example, shrink the variance of Y in the updating process, or use a

non-Bayesian updating rule that underweights the base rate (Bar-Hillel, 1980) or over-

weights the likelihood ratio as in diagnostic expectation formation (Bordalo et al., 2018,

2019). A characterization of the form of nuisance neglect across information structures

is necessary, first, to incorporate it in formal models and distinguish between competing

theories and, second, as an input to studying its underlying mechanisms. I characterize

different candidate characterizations based on whether they correspond to the (implicit
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or explicit) use of (i) an alternative subjective signal structure Si, (ii) a distorted distri-

bution of Y , hY , or (iii) a non-Bayesian updating rule. These explanations need not be

mutually exclusive. In an additional series of online experiments, subjects face various

tasks that allow to distinguish between them. This evidence is reported in Appendix D.1.

I summarize threemain findings. First, nuisance neglect is incompatible with likelihood-

based models, specifically diagnostic expectations. People form diagnostic expectations

if they overweight outcomes that become more likely upon arrival of new information

(Bordalo et al., 2018). However, in my data people typically overweight outcomes of X

that are close to s, even if these outcomes have become less likely under s. For exam-

ple, consider two variables X and Y that are independent and uniformly distributed as

U{50, 51, ..., 150}, and signal structure S = X + Y .3⁰ Upon observing, e.g., s = 145,

diagnostic expectations imply overweighting of small values of X below 100. In the ex-

periment, however, subjects overweight outcomes of X above 100, as if trying to explain

the signal solely through X (cf. Appendix Figure 14). Relatedly, empirical beliefs do not

feature the kernel of truth property of diagnostic expectations, which implies that beliefs

generally respond to news in a directionally correct, but excessive manner. In the experi-

ment, subjects also respond to news that is fully uninformative about X .

Second, we find that nuisance neglect is not consistent with Bayesian updating under

a distorted prior about Y . Specifically, in several tasks, stated beliefs about X are incom-

patible with any possible subjective belief about Y on the union of the actual support of

Y , the mean, median and mode of Y , and a value of 0. This contradicts any rule that

replaces Y by a single value in its support, its mean, etc., as well as any rule that shrinks

the variance of Y .

Third, I document the following reduced-form patterns. If s is in the support of X ,

nuisance neglect corresponds to overweighting the outcome(s) closest to s. If s is not

in the support of X but “sufficiently close”, posterior beliefs allocate excessive mass to

the outcomes in the support of X that are closest to s. If s is not in the support of X

and sufficiently far from any value with positive likelihood, the share of nuisance neglect

3⁰See Appendix Table 9.
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substantially decreases.31

The upshot of this analysis is that, for the data and signal structures analyzed here,

nuisance neglect is best characterized as a strong form of ignorance about the existence

of Y : people seem to apply a modified signal structure Si that excludes Y .

Table 9: Online experiment on form of nuisance neglect

X Y Info structure I Observed info i

U{75, 76, . . . , 125} U {90,91, . . . , 110} X+Y
2 Individual draw

U{75, 76, . . . , 125} U {−25,−24, . . . , 25} X + Y Individual draw

N (100,400) N (50, 100) X+Y
2 Individual draw

N (100,400) N (100, 100) X+Y
2 Individual draw

N (100,400) N (100, 100) X + Y Individual draw

U{50, 51, . . . , 150} U {50,51, . . . , 150} X + Y 145

U{75, 76, . . . , 125} U {90,91, . . . , 110} X+Y
2 116

N (100,400) N (100, 100) 2 · X + 2 · Y 412

N (100,400) N (100, 100) 2 · X + Y 266

N (100,400) N (100, 100) X + Y 110

Notes: This table provides an overview of the ten belief tasks in the online experiment on the form of nuisance neglect.

Note that for all normally distributed variables, the support was discretized to integers, truncated at µ−50 and µ+50 and

then the distributions were scaled such that the they have unit probability mass.

Table 9 displays the ten tasks used in an online experiment on the form of nuisance

neglect with 79 subjects recruited from Mturk. In five of those tasks, information values

are drawn individually for each subject, while in the remaining tasks one information

value is drawn jointly for all subjects to obtain higher power for a specific realization.

Figures 13 and 14 illustrate the corresponding results. In each of the tasks in Figure 13,

the solid reference line corresponds to Bayesian posteriors while the dashed line indicates

31Note that these results reflect the specific experimental design – that is, algebraic signal structures in
which X and Y are combined additively – and should be viewed as such without implying any generality.
In practice, information environments rarely have these features. Uncertainty about the exact form of the
information structure may make people even more susceptible to nuisance neglect.
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reference beliefs under nuisance neglect.

Figure 14 demonstrates that the form of nuisance neglect is not generally in line with

people using a modified distribution of Y . To see this, the green line indicates a corre-

sponding threshold: all beliefs on the opposite side of the Bayesian posterior are not com-

patible with any possible implied distribution of Y on the actual support of Y . At the same

time, these tasks indicate that nuisance neglect is not easily reconciled with oversensitiv-

ity to the likelihood (or neglect of base rates), as would be in line with, e.g., diagnostic

expectations (Bordalo et al., 2018). Consider for example the task displayed in the up-

per right corner of Figure 14, where X ∼ U{50, 51, . . . , 150}, Y ∼ U{50,51, . . . , 150},

I = X + Y and i = 145. Here, an information value of 145 indicates that a relatively

small value of X , i.e., x < 100, has been drawn, and the likelihood increase is greatest for

values of X below 100. However, people predominantly choose values above 100, close

to 145.
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Figure 13: Raw beliefs in online experiment on the form of nuisance neglect. The solid reference line
indicates the Bayesian posterior, the dashed line shows nuisance neglect. N = 79 in each task. Displayed
are the five out of ten tasks in which the information value was individually drawn for each subject. The
task order (of all ten tasks) was randomized at the individual level.
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Figure 14: Raw beliefs in online experiment on the form of nuisance neglect. The solid red reference line
indicates the Bayesian posterior, the dashed red line shows nuisance neglect. The green line indicates a
threshold. All belief on the opposite side of the Bayesian posterior are not compatible with any possible
implied distribution of Y on the actual support of Y . These tasks therefore provide evidence against the
idea that nuisance neglect is in line with people using a modified distribution of Y . N = 79 in each task.
Displayed are the five out of ten tasks in which all subjects observed the same information value. The task
order (of all ten tasks) was randomized at the individual level.
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E Mechanism Treatments

For all online mechanism experiments the five tasks displayed in Table 10 were used.

Table 10: Online tasks in mechanism treatments

X Y I

N (100, 100) N (0,100) X + Y
N (100, 100) N (0,100) X + Y
N (100, 100) N (0,400) X + Y
U [75, 76, . . . , 125] U [−25,−24, . . . , 25] X + Y
U [75, 76, . . . , 125] U [90, 91, . . . , 110] X+Y

2

Notes: This table provides an overview of the five baseline belief tasks in the
online mechanism experiments. Note that for all normally distributed variables,
the support was discretized to integers, truncated at µ−50 and µ+50 and then
the distributions were scaled to have unit probability mass.
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E.1 Hint Treatment
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Figure 15: Implied inattention to Y in three conditions. Based on 950 stated beliefs. The curves show kernel
density estimates for each treatment (Narrow N=360, Broad N=360, Hint N=230). A parameter of θ = 0
is consistent with Bayesian updating. θ = 1 means complete nuisance neglect. Epanechnikov kernel with
bandwidth 0.05.
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E.2 Confidence Ratings

After finishing the baseline, robustness and bonus belief tasks in the laboratory, each of the

tasks was again presented successively including all previously shown information as well

as the subject’s stated guess. In a list with fixed monetary amounts from 0 euros to 6.25

euros in steps of 0.25 euros, subjects then indicated whether they prefer to be paid out for

their stated belief, or receive this fixed amount, in case this belief task would be selected

to count. Single switching was enforced. Figure 16 shows that implied inattention of the

belief and stated valuations for the belief are virtually unrelated.
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Figure 16: Scatterplot and linear regression fits for valuations of stated beliefs and implied inattention by
condition. Based on N=360 each for condition Narrow and condition Broad.
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E.3 Switch-Role Tasks

As the last part of the main baseline experiment, i.e., following the confidence tasks,

subjects were (unexpectedly) presented with two additional tasks in which roles were

switched with the respective other condition. The switch-role task configurations were

comparable to those of the baseline tasks. Figure 17 displays group means of inattention

for each of the blocks of tasks by condition. Having previously predicted X and Y in condi-

tion Broadmakes subjects somewhat less inattentive than in the Narrow baseline, but not

by much. A highly significant reverse treatment effect persists in teh switch-role tasks.
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Figure 17: Group means of inattention by task block and condition. Based on N=360 baseline beliefs and
N=144 switch-role beliefs each for condition Narrow and condition Broad .

In Table 3 I analyze inattention scores as defined in equation (6) on the pooled sample

of beliefs from the baseline and Switch-role tasks. We find that (i) unsurprisingly, Narrow

subjects almost immediately improve when facing the broad setup, and display a similar
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level of inattention as Broad subjects in the baseline (p > 0.7, see footer of Table 3), (ii)

Broad subjects do transfer their experience in forming Bayesian beliefs, as indicated by

a significant improvement relative to Narrow subjects in baseline (p < 0.05), (iii) this

transfer, however, is far from perfect and a significant treatment effect between Narrow

and Broad persists in the Switch-role tasks, albeit now with the reverse sign. In fact, mean

inattention in Broad is 0.59 in Switch-role, compared to baseline means of 0.11 in Broad

and 0.73 in Narrow. Put differently, the improvement in Broad is small and subjects ef-

fectively commit inattentive inference to a roughly similar extent as if they had not made

the baseline experience.
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E.4 The Role of Effort: Manipulation of Stake Size

In treatment High Stakes, the possible prize is raised five-fold relative to the baseline

online experiment. Under higher incentives, we find that the prevalence of Bayesian up-

dating increases statistically significantly, but fully at the expense of signal neglect, see

Figure 4. Strikingly, the share of nuisance neglect remains roughly constant. Effort as

measured by response times increases significantly, both overall and within each sub-

group (pairwise t tests, all p < 0.001). This means, given higher incentives, subjects try

harder, but that only affects non-updating, reducing the fraction of subjects that ignore

the signal altogether. On average, higher effort does not reduce nuisance neglect, how-

ever. Compellingly, a tenfold increase of the stake size in the laboratory experiment leads

to a similar pattern, see Appendix Section E.4. This indicates that psychic costs, cogni-

tive miserliness, laziness or effort reduction may explain non-updating, but have limited

explanatory power for nuisance neglect.

Note that these findings square with the result from Section 4.2.2 on the effect of

enforced deliberation time when considering their differential effect on attention. By dis-

abling the belief elicitation tool, treatment Enforced Deliberation may nudge subjects into

specifically re-considering their solution strategy, which leads some to figure out the role

of Y . Treatment High Stakes does not direct effort in this way. Higher effort per se is in-

sufficient to reduce nuisance neglect, perhaps because it is targeted at the computational

elements rather than subjects’ mental representation of the task.
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Table 11: Inattentive inference and effort

Tasks: Bonus round (variation of stakes)

Conditions: Narrow and Broad Narrow

Dependent variable: Response time Inattention θ

(1) (2) (3)

High stakes in bonus task 19.778** -0.017 0.001

(8.711) (0.054) (0.100)

0 if Broad, 1 if Narrow -32.444*** 0.502***

(7.538) (0.084)

Treatment dummy * High stakes -3.830 0.019

(11.795) (0.113)

Constant 66.111*** 0.101** 0.603***

(5.671) (0.042) (0.073)

R2 0.24 0.37 0.00

# Observations 144 144 72

Notes: OLS regressions. In the bonus round I randomly vary within each treatment whether incen-

tives are 1 euro or 10 euros. Response time is the duration in seconds the subject spent on the belief

elicitation page. Inattention is calculated as θ = HB
HB+HN

, where HB and HN denote the Hellinger

distance of the subjective distribution to the Bayesian posterior and the inattentive posterior distri-

bution, respectively. Robust standard errors clustered at participant level in parentheses. *p < 0.1,

**p < 0.05, ***p < 0.01.
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E.5 The Effect of the Specific Cost of Nuisance Neglect

The stake size manipulation changes the benefit of forming optimal Bayesian beliefs,

which means it simultaneously increases the cost of all deviations from optimality. In the

following, I investigate whether the specific cost of nuisance neglect affects its prevalence.

In economic models of rational belief formation, the likelihood of committing a specific

error depends on its expected cost in utility terms (Caplin and Dean, 2015; Gabaix, 2014;

Wiederholt, 2010). On that account, the prevalence of nuisance neglect should vary sys-

tematically with its expected accuracy in a given information environment.

Two remarks about this exercise are in order. First, one way of conceptualizing the

role of Y is in terms of the amount of variance and the amount of bias that Y introduces

into the signal structure relative to a fully revealing signal structure S = X . As the signal-

to-noise ratio σ2
X

σ2
Y
increases, a neglect of Y induces fewer distortions. Similarly, as the

directional bias
�

�E[S] − E[X ]
�

� increases due to a shift in the mean of Y , neglecting Y

leads to increasingly distorted beliefs about X . Therefore, I run two sets of experiments

that fix the signal structure while separately varying the amount of variance and bias

introduced by Y .

Second, the objective of this Section is to test the dependence of the attribution error

on its costliness (the friction explanation) against the alternative, mental gap account of

nuisance neglect. The variation of the cost of nuisance neglect should therefore not in

itself direct attention to Y and close a potential mental gap in this way. Note, however,

that an information structure in which nuisance neglect leads to larger distortions is as-

sociated with signal realizations that are more likely to lead to implausible (or ex-ante

surprising) beliefs. A signal realization with low likelihood under nuisance neglect may

in itself act as a cue that triggers a reconsideration of the problem interpretation. Take the

following example, in which X and Y are both independently drawn from a (discretized)

N (100,10) distribution and the subject receives a signal S = x+y
2 = 107. Intuitively, after

observing S = 107 and believing that S = X , the agent allocates the entire probability

mass to X = 107. The plausibility refers to how likely this specific posterior belief was
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prior to receiving the signal (interpreted under the flawed mental model). The plausibil-

ity equals the prior probability of X in this case, i.e., P(X = 107). A low plausibility of

the belief under nuisance neglect can in itself act as a hint and nudge subjects to real-

ize their neglect of Y . Next, consider the otherwise identical situation where Y (but not

X ) is instead drawn from a (discretized) N (100, 50) distribution, so that Y introduces

substantially more variation into the signal structure. Compared to the previous case, a

low-plausibility posterior belief (under nuisance neglect) becomes more likely due to the

high variance of Y , implying that even a mental gap explanation can rationalize reduced

nuisance neglect on average in this task. At the same time, for any given signal realization,

ex-post plausibility remains the same, even though the expected cost of neglecting Y in-

creases across tasks. This means that only the friction explanation predicts an effect of

the expected distortion for a given signal realization. In the following analysis, I will dis-

tinguish between the effect of the expected size of the distortion associated with nuisance

neglect in a problem and that same effect conditional on the signal realization.

E.5.1 Treatment Signal-to-Noise Ratio

Treatment Signal-to-noise ratio varies the ratio between the variance of X , σ2
X , and the

variance of Y , σ2
Y , across tasks while fixing all other parameters of the information struc-

ture at µX = 100, µY = 0 and S = X + Y . Denote λ = σ2
X

σ2
X+σ

2
Y
the fraction of the signal

variation coming from X , which is a re-parameterization of the signal-to-noise ratio that

is bounded by 0 and 1. All seven task specifications are listed in Appendix Table 12, which

shows that λ varies between 0.015 to 0.985 across tasks. I conduct additional online ex-

periments with a sample of N = 209 subjects. The task order is again randomized and

one task is randomly incentivized with a prize of 3 dollars.

I define the empirical analogue of λ for the signal information structure studied here

as λ̂ = m−100
s−100 , such that λ̂ = 1 indicates nuisance neglect. Appendix figure 18 plots the

estimated kernel densities of λ̂ by task. Mirroring earlier findings, there are three pro-

nounced empirical modes in each task, corresponding to Bayesian updating, nuisance
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neglect and signal neglect, i.e., non-updating.

I report two main findings. First, the share of nuisance neglect strongly increases in λ,

which is in line both with people responding to the decreasing cost of nuisance neglect

and a mental gap that is closed by low plausibility signals under nuisance neglect, as

discussed above.32 Second, as discussed above, signal realizations further away from 100

become more likely as the signal-to-noise ratio decreases, decreasing the ex-post plausi-

bility P(X = s). Using additional regression analyses we find that the effect of λ on the

prevalence of nuisance neglect turns insignificant upon adding P(X = s) as a control.

This means, comparing two tasks with identically distributed X and identical signal real-

ization s, but different variance of Y , there is no statistically significant difference in the

propensity to commit nuisance neglect. Both findings are in line with the mental gaps

explanation, but the latter is inconsistent with the friction explanation.

Appendix figure 18 documents the results by plotting estimated kernel densities of

λ̂ = m−100
s−100 by task. In line with the previous results, there are three empirical modes in

each task, corresponding to Bayesian updating, nuisance neglect and information neglect,

i.e., non-updating. Note that the value of λ in line with Bayesian beliefs changes across

tasks, as indicated by the dashed diagonal line. To support the visual analysis, I perform

non-parametric test on the distributions of λ̂. First, the summed share of beliefs in line

with either one of the three updating modes (defined as being within [λ−0.05,λ+0.05])

does not significantly differ across tasks (p > 0.1 for all pairwise comparisons in χ2 tests).

Second, for each task with λ > 0.75, the share of beliefs in line with nuisance neglect

(again, defined as being within [0.95,1.05]), is significantly higher than in all tasks with

λ < 0.75 (all p < 0.05, pairwise χ2 tests). Third, for each task with λ < 0.25, the share of

beliefs in line with signal neglect (defined as being within [−0.05, 0.05]), is significantly

higher than in all tasks with λ > 0.25 (all p < 0.01, pairwise χ2 tests). All this means is

that, in line with the prediction, the share of nuisance neglect increases with increasing

signal-to-noise ratio λ.

32For each task with λ > 0.75, the share of beliefs in line with nuisance neglect (defined as λ̂ ∈
[0.95, 1.05]), is significantly higher than in all tasks with λ < 0.75 (p < 0.05 in all pairwise χ2 tests).
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Note, however, that as the signal-to-noise ratio decreases, subjects are also more likely

to observe signal realizations further away from 100, which is the mean of the normally

distributed X . This means the subjective likelihood of a signal P(Si = s) decreases. In

additional analyses reported in Appendix E.5.1, I show that while nuisance neglect in-

creases in λ, this effects becomes insignificant once I control for the subjective likelihood

of observed signal values under nuisance neglect. That means, in two tasks with identically

distributed X and an identical observed information value s, there is no statistically sig-

nificant difference in the propensity to commit nuisance neglect.
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Figure 18: Kernel density estimates for seven different tasks (see Table 12) in an online experiment testing
the effect of the signal-to-noise ratio on the prevalence of different updating modes. The horizontal axis
indicates λ = σ2

X
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Y
of the task. The vertical axis shows the empirical equivalent derived from subjects

guesses as λ̂ = m−100
s−100 . Note that λ̂ = 0 indicates signal neglect, λ̂ = 1 indicates nuisance neglect, and

the dashed line indicates the λ̂ that corresponds to Bayesian updating. Based on N=207 in each task.
Epanechnikov kernel with bandwidth 0.07.
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E.5.2 Treatment Directional Bias

The second treatment, Directional Bias, tests the effect of directional bias in the informa-

tion structure while holding constant the signal-to-noise ratio. For an information struc-

ture S = X + Y , the expected bias of beliefs that neglect Y by assuming S = X increases

in |µS −µX |.

I conduct an additional online experiment (N = 112) using the five task configurations

displayed in Appendix Table 13. This time, only µY varies across tasks while all other

parameters of the information structure are fixed at µX = 100, σ2
X = σ

2
Y = 100 and

S = X + Y .33 The mean value of the signal, µS, varies with µY . To optimally learn from S,

subjects need to account for the fact that observed values of S were on average higher or

lower than the corresponding draws of X whenever µX 6= µS, i.e., they are directionally

biased. This also sets this experiment apart from the baseline study, where S is an unbiased

estimator of the mean of X .

Raw beliefs for each task are plotted in Appendix Figure 19. I report two main find-

ings. First, in non-parametric tests we find that subjects are less likely to commit nuisance

neglect as the directional bias of the signal increases, i.e., the greater the absolute value

of µY (p < 0.05 in all pairwise χ2 tests, see Appendix E.5.1 for details). Second, with

increasing bias subjects are again more likely to observe signal realizations that lead to

beliefs with low ex-post plausibility under nuisance neglect, P(X = s). Signal realizations

are more likely to make subjects aware of their nuisance neglect. In regression analy-

ses reported in Appendix E.5.1, I again find that the decrease of nuisance neglect with

increasing directional bias turns insignificant upon adding P(X = s) as a control.

Taken together, the prevalence of nuisance neglect decreases as its expected cost in-

creases in both experiments. However, an analysis that pools all signal realizations ignores

the fact that information structures with higher cost generate more extreme signal real-

izations in this setting, and that more extreme signal realizations can act as attentional

33Note that λ= σ2
X

σ2
X+σ

2
Y
is held constant across tasks, setting this experiment apart from treatment Signal-

to-noise ratio.
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cues in themselves. We find that conditional on the signal realization there is no effect of

the expected cost of ignoring Y . This is consistent with a mental gaps explanation but not

a friction explanation as defined here. Specifically, the prevalence of nuisance neglect is

insensitive to its costliness across tasks of the same experiment.

Table 12: Online tasks: Experiment on signal-to-noise ratio

X Y S λ= σ2
X

σ2
X+σ

2
Y

N (100,25) N (0, 1600) X + Y 0.015
N (100,100) N (0, 1600) X + Y 0.059
N (100,25) N (0, 100) X + Y 0.25
N (100,100) N (0, 100) X + Y 0.5
N (100,100) N (0, 25) X + Y 0.75
N (100,1600) N (0, 100) X + Y 0.941
N (100,1600) N (0, 25) X + Y 0.985
Notes: This table provides an overview of the five tasks in the online experiment
on the effect of the signal-to-noise ratio. Note that for all normally distributed
variables, the support was discretized to integers, truncated at µ−50 and µ+50
and then the distributions were scaled such that the they have unit probability
mass.

Table 13: Online tasks: Experiment on directional bias
in information

X Y S µS

N (100,100) N (0, 100) X + Y 100
N (100,100) N (−25,100) X + Y 75
N (100,100) N (−50,100) X + Y 50
N (100,100) N (25, 100) X + Y 125
N (100,100) N (50, 100) X + Y 150
Notes: This table provides an overview of the five tasks in the online
experiment on the effect of the directional bias in signals. Note that
for all normally distributed variables, the support was discretized to
integers, truncated at µ − 50 and µ + 50 and then the distributions
were scaled such that the they have unit probability mass.

Raw beliefs for each task are plotted in Appendix figure 19. The figure indicates that

subjects were less likely to commit nuisance neglect as the directional bias of the signal

increased, i.e., the greater the distance of µY from 0.

This observation is supported by non-parametric tests. The share of beliefs in line with
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Figure 19: Beliefs in baseline tasks of online experiments. N=112 in each task. Each dot corresponds to
one stated belief. The three red line indicate the Bayesian benchmark, nuisance neglect, and information
neglect.

nuisance neglect significantly decreased as µS moved away from 100.3⁴ Notably, I found

that this decrease went hand in hand with an increase in Bayesian beliefs, rather than

signal neglect.3⁵

Similar to the case of treatment Signal-to-noise ratio, however, as directional bias in a

signal structure increases, subjects are more likely to observe signal values with low sub-

jective likelihood under nuisance neglect. This means the plausibility of observed signals

3⁴That is, the share of nuisance neglect decreased in both directions away from 100 for adjacent tasks,
e.g., both for µS = 100 vs. µS = 75 and µS = 75 vs. µS = 50. Nuisance neglect can be defined in different
ways. I either define it as any guess falling within a margin of 5 units around the hypothetical nuisance
neglect guess, or based on d rel

FN =
dFN

dFN+dB+dSN
falling within 0.05 to either side of 0, where d is the distance

of a stated belief m to the respective benchmark belief for each of three updating modes. That means, e.g.,
dB =

�

�m−mB

�

� is the distance to the Bayesian belief. Hence, d rel
FN is the distance of a belief to a hypothetical

belief under nuisance neglect, relative to the summed distances of the elicited belief to all three updating
modes. p < 0.05 in all pairwise χ2 tests.

3⁵The share of Bayesian beliefs as defined above significantly increases with the distance of µS from 100,
p < 0.1 in all pairwise χ2 tests.
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decreases under the subjective signal structure associated with the default representa-

tion, and hence a signal is more likely to be a cue. In the regression analyses reported in

Appendix E.5.1, I again find that the decrease of nuisance neglect with increasing direc-

tional bias vanishes after controlling for the subjective likelihood (assuming nuisance neglect)

of observed signal values.

Table 14: Directional bias

Dependent variable: Rel. distance from
nuisance neglect

1 if rel. distance from
nuisance neglect < 0.1

(1) (2)

Y ∼N (−50,100) 0.088** -0.128**
(0.044) (0.061)

Y ∼N (−25,100) 0.142** -0.176**
(0.058) (0.084)

Y ∼N (25, 100) 0.154*** -0.211***
(0.043) (0.064)

Y ∼N (50, 100) 0.169*** -0.238***
(0.056) (0.084)

Absolute difference of signal from mean 0.005*** -0.006***
(0.001) (0.002)

Constant 0.262*** 0.744***
(0.031) (0.051)

R2 0.15 0.12
# Observations 548 549

Notes: The dependent variables are computed based on dNN
dNN+dB+dIN

where d· is the distance
of a stated belief m to the respective benchmark belief for each of three updating modes,
e.g., dB =

�

�m−mB

�

� is the difference to the Bayesian belief. Hence the dependent variable
in (1) is the distance of a belief to a hypothetical belief under nuisance neglect, relative to
the summed distances of the elicited belief to all three updating modes. The dependent
variable in (2) is a dummy for whether this relative distance is smaller than 0.1, such
that a belief is plausibly classified as nuisance neglect. In all tasks, X ∼N (100,100) and
I = X + Y . OLS regressions. *p < 0.1, **p < 0.05, ***p < 0.01.

Taken together, the prevalence of nuisance neglect decreases as its expected cost in-

creases in both experiments. However, an analysis that pools all signal realizations ignores

the fact that information structures with higher cost generate more extreme signal real-

izations in this setting, and that more extreme signal realizations can act as attentional
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cues in themselves. We find that conditional on the signal realization there is no effect of

the expected cost of ignoring Y . This is consistent with a mental gaps explanation but not

a friction explanation as defined here. Specifically, the prevalence of nuisance neglect is

insensitive to its costliness across tasks of the same experiment.

39



F On Complexity and the Persistence of Errors

F.1 Overview

Evidence for systematic errors in seemingly simple tasks may be surprising given people’s

ability to learn from feedback. In practice, people frequently receive performance feed-

back and have ample opportunities to learn. Yet, the persistence of errors even in the

presence of performance feedback is widely documented (Gigerenzer, 1991; Stanovich

and West, 2000). At the same time, our understanding of its sources remains limited.

The findings on the behavioral mechanism underlying nuisance neglect point to a

potential explanation: when a solution strategy comprises several elements, people may

fail to learn about the actual source of an error even in the presence of feedback. This

motivates the following investigation of the origins of persistence of errors in the case of

nuisance neglect.

I highlight three implications of the previous results for learning. First, we find that

interventions that specifically direct attention to the neglected part of the problem reduce

the bias (e.g., treatments Hint and Enforced Deliberation), but experimental manipula-

tions that unspecifically increase the overall motivation do not (e.g., High Stakes). Simple

performance feedback is typically unspecific: people are either informed that they made a

mistake and/or they learn the optimal action. This way, unspecific performance feedback

leaves open what exactly led to a suboptimal response.

Second, a person is less likely to identify the source of an error if it is an element of

the solution strategy that they do not deliberately execute. The previous evidence from,

e.g., confidence statements, suggests that people neglect nuisance variables without being

aware of the neglect.

Third, a more complex solution strategy with many steps may divert attention from

the specific source of error. The propensity to learn from unspecific feedback may thus be

reduced by more computational steps required in the solution process.

Prediction 2. Learning from feedback is limited by subjects’ failure to identify the specific
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source of their error.

(a) Nuisance neglect is not eliminated by performance feedback.

(b) An increase in the computational complexity of the updating problem reduces learning

from feedback because subjects (falsely) attribute mistakes to deliberately executed

computations.

F.2 Design

In three additional laboratory experiments I test these predictions about persistence and

learning.

Treatment Feedback. This treatment is identical to the baseline treatment Narrow,

except that it provides standard performance feedback: in each of the five baseline tasks,

after guessing X , subjects learn the true value of X .

Treatment Computation with Feedback. To manipulate the computational complex-

ity of the updating task, condition Computation with Feedback adds a simple algebraic com-

putation to the signal structure. These computations are extremely simple, e.g., “+20−

30”. Identical computations used in treatment Computation show that they do not affect

stated beliefs. This treatment tests the prediction that while added computations do not

affect stated beliefs, they affect learning form feedback.3⁶ Specifically, the computation

provides an obvious source of error, so that subjects who commit nuisance neglect may

misattribute an error to the computation and fail to notice their neglect of Y .

Treatment Computational Feedback. A concern in comparing behavior in the pre-

vious two treatments is that added computations increase the complexity of both the

updating stage and the feedback stage. A reduction of learning might result from the lat-

ter, whereas the hypothesis concerns the former. To address this issue, a third treatment

holds the overall complexity of the combined updating and feedback problem constant.

3⁶Computation with Feedback is identical to condition Computation, except for the feedback; and it is
identical to condition Feedback, except for the additional simple computation.
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In Computational Feedback, subjects receive a signal on X and Y without additional com-

putations, as in Feedback. However, a computation is added at the feedback stage. Instead

of observing the true value of X, subjects see a different value, e.g., X +20−30, and need

to undo the simple computation to learn the true value. Note that the added computation

enters after stating a guess about X and thus cannot possibly affect inference.

This treatment tests the prediction that upon learning about a mistake after decipher-

ing the true X, subjects cannot attribute this updating error to the computation, which oc-

curred after stating the guess. This increases the likelihood of reflecting on other sources

of error including the role of Y . If learning in this treatment is similar to Feedback but

less that in Computation with Feedback, one may conclude that learning is impaired by

computational complexity that is specific to the updating task.

F.3 Results

In the first round – before receiving feedback for the first time –, nuisance neglect as mea-

sured by the inattention score θ (equation (6)) is indistinguishable across the feedback

treatments (Appendix Figure 21), as should be the case.3⁷ The following analyses show

data from the last round only, since learning effects should be highest after several rounds

of feedback.3⁸ Figure 20 displays mean inattention by treatment condition. All statistical

analyses, however, are based on empirical distributions of inattention.3⁹ Figure 20 shows

the three feedback conditions (below the dashed line) alongside three no-feedback con-

ditions (above the dashed line, discussed in Section 3.1.4) for comparison. I report three

main findings. First, the provision of feedback alone (condition Feedback) significantly de-

creases inattention relative to treatment Narrow (p < 0.001, M-W U test). At the same

time, learning is far from perfect, as indicated by a remaining treatment effect between

Feedback and the Broad treatment without feedback (p < 0.001).

3⁷This validates the previous result that the computation in itself does not affect stated beliefs.
3⁸I obtain similar findings when pooling beliefs from round two to round five. See further results in

Appendix F.
3⁹See Appendix F for distribution plots.
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 Computational Feedback

Computation with Feedback

Feedback

Computation

Broad

Narrow

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
 

Inattention
(mean ± s.e.m.)

Figure 20: Treatment means of inattention to Y . Inattention scores are calculated following Section 3.1.5.
The three treatments above the dashed line show conditions without feedback for reference (see Section 3).
Subjects receive feedback is about the actually drawn value of X . Displayed are implied inattention scores
in the final baseline round, after having received feedback in the four preceding rounds. Sample sizes are
N = 72 in both Narrow and Broad, N = 48 in Feedback, and N = 24 in each of Computation, Computation
with Feedback and Computational Feedback.

Second, additional computations in the inference process impede learning. Inatten-

tion in Feedback and Computation with Feedback differs significantly (p = 0.008). Added

computations presumably reduce subjects’ propensity to notice that there are parts of the

problem that they have failed to attend to, i.e., the role of Y . Notably, the added com-

putation virtually eliminates learning. Inattention in Computation with Feedback is not

significantly lower than in Computation (p = 0.21).

Third, the elimination of all learning effects in Computation with Feedback is not driven

by the increase in overall complexity relative to Feedback. In fact, inattention in Compu-

tational Feedback is indistinguishable from Feedback (p = 0.48), but significantly differs
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from Computation with Feedback (p = 0.005).

Taking stock, the data from three feedback experiments support the prediction that

attribution errors persist because subjects fail to identify the specific source of their up-

dating error, which is exacerbated by higher computational complexity.

In an attempt to gather more direct (correlational) evidence for this hypothesis, the

experiments include an additional choice in all feedback treatments. On the feedback

screen that informed about the actual draw, subjects could choose to be reminded of up

to exactly one piece of the preceding belief task: the distribution of X, the distribution of

Y, or the signal structure. Revealing such details can help subjects figure out the source

of their erroneous guess. In the first round, i.e., upon receiving feedback for the first

time, subjects are indeed more likely to reveal the distribution of Y in Feedback than in

Computation with Feedback (p = 0.044), indicating that they are more likely to notice

a potential role of Y in the absence of additional computations. This effect, however, is

not robust and loses significance when pooling all rounds. Procedural details and further

results are relegated to Appendix F.⁴⁰

Result 3. x

(a) Performance feedback decreases, but does not eliminate nuisance neglect.

(b) An increase in computational complexity eliminates learning from performance feed-

back.

In the first baseline round, i.e., before receiving feedback for the first time, inattention

scores do not significantly differ between the four learning treatments, as expected.

⁴⁰Finally, note that performance feedback in practice is often noisy. The possibility that observed feedback
is imprecise provides another obvious way for subjects to resolve the conflict between their subjective
belief and surprising feedback, again reducing learning about their neglect. In condition Imperfect Feedback,
subjects receive feedback about the true X that is correct only with 80% probability, but see a value of
X which is not true with 20% probability. Again, learning is reduced to a similar extent as by adding the
computation, see Appendix F.7.
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Computation with Feedback

Feedback
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(mean ± s.e.m.)

Figure 21: Treatment means of inattention to Y in the first round. Displayed are implied inattention scores
in the initial baseline round. Subjects have not previously received feedback when stating these guesses.
Sample sizes are N = 48 in both Feedback N = 24 each in all other three conditions.
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F.4 Feedback

From the initial experiments we know that the neglect of Y is typically confident and oc-

curs outside subjects’ awareness. The key hypothesis motivating the feedback treatments

is that people fail to reflect on steps of their solution strategy that are not available to

introspection or recall, interfering with learning even in the presence of surprising feed-

back. Condition Feedback is akin to Narrow, but also shows the actually drawn number

of X after guessing it. Relative to the no-feedback benchmark (condition Narrow), there

is marginally significant learning after receiving feedback for the first time (p=0.06, in

a regression of inattention in the second round on a treatment dummy and including

task-fixed effects). After having received feedback four times, mean inattention is .27 as

compared to .69 in the no-feedback baseline. Despite this sizable improvement, inatten-

tion is still significantly greater than in the fifth round of the no-feedback setting with

Broad incentives (mean inattention 0.10, p=0.00). Figure 22 shows a histogram of inat-

tention parameters, and Figure 23 histograms of the raw beliefs in condition Feedback.

46



0

.05

.1

.15

.2

.25
Fr

ac
tio

n 
of

 b
el

ie
fs

0 .2 .4 .6 .8 1
 

Implied inattention parameter

Figure 22: Histogram of implied inattention to Y in condition Feedback. Based on 216 stated beliefs. A
parameter of θ = 0 is consistent with Bayesian updating. θ = 1 means complete inattention.

47



0.1.2.3.4.5.6.7.8.91

Distribution of beliefs

30
40

50
60

70
 (1
)

0.1.2.3.4.5.6.7.8.91

23
0

24
0

25
0

26
0

27
0

 (2
)

0.1.2.3.4.5.6.7.8.91

18
0

19
0

20
0

21
0

22
0

 (3
)

0.1.2.3.4.5.6.7.8.91

Distribution of beliefs

80
90

10
0

11
0

12
0

 (4
)

0.1.2.3.4.5.6.7.8.91

13
0

14
0

15
0

16
0

17
0

 (5
)

 

Ba
ye

si
an

 p
os

te
ri

or

Fi
gu

re
23

:D
ist
rib

ut
io
n
of

el
ic
ite

d
be
lie
fd

ist
rib

ut
io
ns

ab
ou

tX
in

ea
ch

on
e
of

fiv
e
ba
se
lin

e
ta
sk
s
of

co
nd

iti
on

Fe
ed
ba
ck
.
N
=
24

fo
r
ea
ch

co
nd

iti
on

in
ea
ch

ta
sk
.
Th

e
ho

riz
on

ta
l
ax
is

sh
ow

sp
os
sib

le
ou

tc
om

es
of

X
.T

he
Ba

ye
si
an

po
st
er
io
rb

el
ie
fi
sp

ro
vi
de

d
fo
rr
ef
er
en

ce
.T

he
ob

se
rv
ed

sig
na

li
si
nd

ic
at
ed

by
th
e
ve
rt
ic
al

da
sh
ed

lin
e.

Ta
sk

or
de

rw
as

ra
nd

om
iz
ed

.

48



F.5 Computation with Feedback

To directly test the hypothesis that people fail to reflect on the non-accessible elements of

their solution strategy, Computation with Feedback provides feedback that is identical to

Feedback, but the initial signal about X and Y is modified by a simple algebraic computa-

tion. This condition is identical to the anchoring treatment Computation, but including the

feedback stage. As found in the Computation condition and confirmed here, the additional

computation is inconsequential for the guesses about X that subjects submit (see also Fig-

ure 21). Virtually every subject correctly accounts for the computation but then tends

to forget about Y. Presented with surprising feedback about the actually drawn number,

however, subjects might now first remember the conscious part of their inference strategy,

i.e., undoing the calculations. The computations provide them with "a place to hang their

coat" in the sense of an obvious – albeit unlikely – source of error. This is what we find:

Adding the computation virtually eliminates learning. Figure 24 shows a histogram of

inattention parameters, and Figure 25 histograms of the raw beliefs in condition Compu-

tation with Feedback.
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Figure 24: Histogram of implied inattention to Y in condition Computation with Feedback. Based on 216
stated beliefs. A parameter of θ = 0 is consistent with Bayesian updating. θ = 1means complete inattention.
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F.6 Computational Feedback

Reduced learning when algebra is added could result from increased complexity. In con-

dition Computation Feedback, therefore, subjects have narrow incentives and receive a

signal on X and Y without additional computations, i.e., the mean or sum as before. This

time however, the same computations as in Computation with Feedback are added at the

feedback stage. That means, instead of seeing the true value of X, subjects see a different

value on which they first perform the computations and then arrive at the true value of X.

The results suggest it is not computational complexity of a problem per se that reduces

learning form feedback. Instead, it is precisely the consciously accessible steps of reason-

ing performed when doing inference that interfere with reflecting on the role of Y. Figure

26 shows a histogram of inattention parameters, and Figure 27 histograms of the raw

beliefs in condition Computational Feedback.

52



0

.1

.2

.3
Fr

ac
tio

n 
of

 b
el

ie
fs

0 .2 .4 .6 .8 1
 

Implied inattention parameter

Figure 26: Histogram of implied inattention to Y in condition Computational Feedback. Based on 216 stated
beliefs. A parameter of θ = 0 is consistent with Bayesian updating. θ = 1 means complete inattention.
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F.7 Imperfect Feedback

Learning in practice is often based on imprecise signals. The possibility that observed

feedback is not exactly right might provide another obvious way for subjects to explain

a conflict between their stated belief and received feedback, reducing learning. In an

additional treatment, feedback about the true X was only correct with 80% probability,

and the remaining 20% subjects would see a value of X which is not the true one. Pooling

beliefs following the first four rounds of feedback, there is only a small and marginally

significant positive effect of receiving this feedback on inattention relative to receiving no

feedback at all (p = 0.09). As predicted, simple solutions for why beliefs conflict with the

feedback compromise the ability to reflect on the role of Y. Figure 28 shows a histogram of

inattention parameters, and Figure 29 histograms of the raw beliefs in condition Imperfect

Feedback.
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Figure 28: Histogram of implied inattention to Y in condition Imperfect Feedback. Based on 216 stated
beliefs. A parameter of θ = 0 is consistent with Bayesian updating. θ = 1 means complete inattention.

56



0.1.2.3.4.5.6.7.8.91

Distribution of beliefs

30
40

50
60

70
 (1
)

0.1.2.3.4.5.6.7.8.91

23
0

24
0

25
0

26
0

27
0

 (2
)

0.1.2.3.4.5.6.7.8.91

18
0

19
0

20
0

21
0

22
0

 (3
)

0.1.2.3.4.5.6.7.8.91

Distribution of beliefs

80
90

10
0

11
0

12
0

 (4
)

0.1.2.3.4.5.6.7.8.91

13
0

14
0

15
0

16
0

17
0

 (5
)

 

Ba
ye

si
an

 p
os

te
ri

or

Fi
gu

re
29

:D
ist
rib

ut
io
n
of

el
ic
ite

d
be
lie
fd

ist
rib

ut
io
ns

ab
ou

tX
in

ea
ch

on
e
of

fiv
e
ba
se
lin

e
ta
sk
so

fc
on

di
tio

n
Im

pe
rfe

ct
Fe
ed
ba
ck
.N

=
24

fo
re

ac
h
co
nd

iti
on

in
ea
ch

ta
sk
.T

he
ho

riz
on

ta
l

ax
is
sh
ow

sp
os
sib

le
ou

tc
om

es
of

X
.T

he
Ba

ye
si
an

po
st
er
io
rb

el
ie
fi
sp

ro
vi
de

d
fo
rr

ef
er
en

ce
.

Th
e
ob

se
rv
ed

sig
na

li
si
nd

ic
at
ed

by
th
e
ve
rt
ic
al

da
sh
ed

lin
e.

Ta
sk

or
de

rw
as

ra
nd

om
iz
ed

.

57



G Experimental Instructions

G.1 Main Instructions in Narrow and Broad

All instructions were computerized. Translated from German into English.

Welcome. For your participation you will receive a fixed payment of 5.00 € , which

will be paid to you in cash at the end. In this study you will take decisions on the computer.

Depending on how you decide you can earn additional money. During the study it is not

allowed to communicate with other participants. Note also that the curtain of your

cubicle must be closed during the entire study. Please turn off your mobile phone now,

so that other participants will not be disturbed. Please only use the designated functions

on the computer and make your entries using the keyboard and the mouse. If you have

questions, please make a hand signal. Your question will be answered at your seat. To

proceed click "Next".

Your Task

Youwill successively receive 9 different guessing tasks. The guessing tasks are about guess-

ing numbers that are randomly drawn. The better your guess, the more money you can

earn. In each guessing task there is a random number X. The computer randomly picks X

from a range of possible numbers. You will receive an encrypted hint about which number

was actually drawn, and you can then indicate your guess about X. There are 9 rounds

in total. In each round you receive a new guessing task. That means, in each round the

computer again determines a number X independently of the other rounds. Your payoff

depends on how precisely you guess, that means how accurate your guess is. At the end

of the study, one of the 9 rounds is picked at random and you will be paid according to

the precision of your guess in that round.

The Guessing Tasks
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Example. Imagine there are exactly 3 balls. These 3 balls have the following numbers on

them: 10, 20, 30. In this example, the number X is determined as follows: The computer

randomly draws one of these three balls. Each ball is drawn with equal probability. It is

equally likely that the “10” will be drawn, that the “20” will be drawn, or that the “30” will

be drawn. The number X is then the number of the ball that was randomly drawn by the

computer. However, you will not be told which number X was drawn. Instead you receive

an additional hint. You can look at this hint, before you guess the number X. Please note:

• For each guessing you will be informed about which numbers can be drawn. In

different guessing tasks, different numbers can be drawn. Sometimes the numbers

repeatedly occur across rounds. However, the draws in these rounds are completely

independent of one another.

• The additional hint can give you different types of information in different rounds.

In each round you will learn anew, what the additional hint means. Therefore you

should pay attention in every new guessing task to which information the hint indi-

cates.

Your guess. You can state your guess by allocating 100 percentage points to the dif-

ferent numbers. The more certain you are, that a particular number was drawn, the more

points you should allocated to this numbers. Similarly, the more certain you are, that a

particular was not drawn, the fewer points you should allocate to this numbers. The sum

of your allocated points must be exactly 100. In the example above, if after receiving the

additional note you are, for example, sure that X = 30, then you should allocate 100

points to the number 30, and 0 points to both the numbers 10 and 20. In the example

above, if after receiving the additional note you are, for example, sure that X = 20, then

you should allocate 100 points to the number 20, and 0 points to both the numbers 10

and 30. In the example above, if after receiving the additional note you think, for example,

that the number 30 have definitely not been drawn, but the 10 and 20 have been drawn

with equal probability, then you should allocate 50 points each to the number 10 and

20, and 0 points to the number 30. You can arbitrarily allocate the points. However you
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can only allocate full points, that means for example that you cannot allocate half points.

For instance, you could allocate 21 points to number 30, 47 points to number 20, and

32 points to number 10. The more points you assign to the number that was actually

drawn, the more money you can earn. Similarly, the fewer points you allocate to

those numbers, that are not equal to X, the more money you can earn. The calcula-

tion of your payoff will be explained in greater detail in the following section.

Your payment

In addition to your show up fee you will be paid based on how precisely you guessed. To

this end one of the 9 rounds will randomly be picked and you will be paid according to the

precision of your guess in that round. This means for you that each one of your guesses is

potentially relevant for your payment and accordingly you should carefully think through

every guess. You can either earn and additional 10 € or 0 € from your guessing task.

While the following explanation might look difficult, the basic principle is very simple:

the better your guess, that is the more percentage points your guess assigns to the

actually drawn number and the fewer percentage points it allocates to every wrong

number, the more likely it is that you receive the 10€ . Concretely this means the

following: In expectation you will earn most money if you allocate your points according

to how probable you find it that the respective numbers was drawn (with 1 point = 1

percent). If you have understood this, it is not necessary for the maximization of your

earnings to read the following section on the details of the calculation of your additional

payment. You can then directly click on “Next.”

For your information: Details on the calculation of your additional earnings. After you

have stated your guess, the computer will randomly draw another number kj This number

is between 0 and 20,000. (More precisely, this numbers is drawn from a discrete uniform

distribution on the interval from 0 to 20,000.) You will then receive the 10 € if the sum

S is smaller or equal to k. S is the sum of the following elements:
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• The squared deviation between the number of points that you allocated to the ac-

tually drawn numbers X, and 100 points.

• For each possible number, that has not been drawn (i.e., every other number than

X): The squared deviation between 0 points and the number of points that you

allocated to this numbers.

An exact mathematical formula of the sum S is displayed in the footnote.⁴1 If the sum S

is bigger than k you will receive 0 € . Accordingly, the payoff rule is as follows:

Payment = 10.00 € , if S ≤ k

Payment = 0.00 € , if S > k

This means the following: If the sum of the squared deviations exceeds a particular value

k, you will receive 0 € . If, however, the sum of the squared deviations is smaller than k,

you will receive 10 € in addition. You can notice here that it should be your goal a) to

keep the difference between the points allocated to X and 100 points as low as possible,

that is to allocate as many points as possible to X, and b) to allocate as few points as

possible to ever other number than X. An example: Let us assume that the computer has

randomly drawn the number X = 30, while the numbers 10, 20 and 30 could have been

drawn with equal probability. Also the number k = 5,000 For the following guesses you

would receive the indicated payments.

⁴1Footnote text: Exact mathematical formulation: There are N possible number from which X is drawn. In
the example, N = 3. The number of points that you allocate to the ith of the N numbers is pi . The indicator
function 1i takes the value 1, if X is the ith number, and 0 otherwise. The sum S is calculated as follows:
S =

∑N
i=1(1i − pi)2. The expected payoff amount is maximized by indicating the probability distribution of

the numbers after receiving the additional hint.
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In particular this means the following: If you allocate all 100 points to the right number

X, you will received the 10 € in any case. However, you will also receive 10 € in many

cases in which you allocate less than 100 points to X. The more points you allocate to the

right number X, the more likely it is, that you receive the 10€ . In expectation, you will

earn the most money if you allocate the points according to how probable you think

it is that the respective number was drawn. Please note:

• It is not necessary, to allocate 100 points to the number that you think is most likely.

As you can see in the examples of the table, you can also win 10 € if you have

allocated less than 100 points to the right number X. Your earnings depend on the

randomly drawn number k.

• Your guess in one randomly picked round will be paid. The guessing task that is pay-

off relevant for you is determined by the computer at the end of the study. Therefore

you should indicate your best guess in each guessing task, independent of all other

guessing tasks.
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Summary

In each round it is your task to state a guess about the number that was randomly

drawn by the computer. Before this, you will get a computer-generated, encrypted hint.

For each guessing task you will see this additional hint and you can subsequently indicate

your guess. Which hint you will receive, and how this hint is encrypted will be explained

in the following. For the deciphering of the hint and your subsequent guess there is a

time limit. You will previously be informed about how much time you have. The remain-

ing time will be displayed while working on the tasks.

Encryption of Hints

You receive additional hints that have been encrypted by an encryption device. The en-

cryption device transforms each hint (a number) into a letter code. You first need to

decrypt the letter code back into a number in order to use the hint.

Decryption of the additional hint. When you get an encrypted sequence of letters as

hint, you can decipher this hint by following these steps:

a. Transform the sequence of letters into a number using the code table.

b. Add 20 to the number

Before every guessing task you will receive an encrypted hint that you can decipher be-

fore stating your own guess. Whenever you receive a hint, you will see the code table as

well as the decryption instructions. That means you don not have to remember the

decryption procedure. You will soon get the opportunity to practice the decryption on

an example hint.
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Control Questions

Please notify one of the experiments now if you have questions about the instructions so

far. If there is something that is unclear to you, please re-read the respective information

carefully. You can return to the previous pages by clicking “Back”. If you click on “Proceed

to control questions”, you will receive several control questions, which ensure your un-

derstanding of the instructions. You will not get paid for the control questions. However,

you have to correctly answer all control questions to proceed to the guessing tasks. After

you have correctly answered all control questions, you will be presented with the first

guessing task.

G.2 Control Questions

Control Question 1 of 9

What is your main task in this study?

• There are several number from which X can be drawn. I need to add these numbers

up to a sum.

• I guess the drawn number X.

Control Question 2 of 9

The numbers from which X is drawn vary across rounds. Sometimes the numbers occur

in different rounds. For example, it could be that in two different rounds, the number X

is randomly drawn from the number “10”, “20”, and “30”. Please evaluate the following

statement: “In both round, each of the 3 numbers is drawn with equal probability.”

• Wrong. If, for example, the “10” was drawn in the first round, it is more probable

that “10” will not be drawn in the next round.

• Correct. Both rounds are completely independent. The draw in the first round has

no influence on which number is drawn in the second round.
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Control Question 3 of 9

In guessing X, how can you make most money?

• By allocating the points to the numbers as precisely as possible based on how certain

I am, that the respective number is X.

• By varying my guess and allocating by instinct sometimes more points to high num-

bers and sometimes more points to low numbers.

Control Question 4 of 9

After you have read the description of the guessing task and received the additional hint,

you think that the number “20” is the most likely drawn number among the numbers.

However you are not certain that it is the “20”. Assess the following statement: “To max-

imize my payoff I have to put all 100 points on the number “10”.”

• Correct. It is only this way that I can earn the 10 euros.

• Wrong. While I should put more points on the “20” than on all other numbers, I

should not putt all points on the “20” , because I am not certain. If for example i

am 60% sure that X = 20, I should put exactly 60 points on the “20”, and allocate

the remaining 40 points to the other numbers. This way it is most probably that I

earn the 10 euros.

Control Question 5 of 9

Which of your guess is payoff-relevant?

• Every guess is paid out.

• No guess is paid out.

• A randomly picked guess is paid out.
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Control Question 6 of 9

Imagine the number X is drawn with equal probability from the following four numbers:

50, 60, 70, 80. You have no additional information. Please indicate how in this case you

should allocate the 100 points to the four numbers such that you make winning the 10

euros as likely as possible. Start by picking a number in the selection box to the left and

assign a number of percentage points in the input field to the right. Use further input

rows if you want to assign percentage points to other numbers.

Control Question 7 of 9

As before the number X is drawn with equal probability from the following four numbers:

50, 60, 70, 80. Please imagine now that after deciphering the hint you are certain that the

“70” was drawn. Please indicate how in this case you should allocate the 100 points to the

four numbers such that you make winning the 10 euros as likely as possible. If you want

to allocate 0 percentage points to a number then you do not have to enter this into an

extra row, but you can simply skip this number (0 points will automatically be allocated).

Control Question 8 of 9

Imagine you receive the hint: AJ. Please decipher the hint and enter your result below.

a. Transform the sequence of letters into a number using the code table.

b. Add 20 to the number

The decrypted hint reads:

Control Question 9 of 9

Imagine now you receive the hint: ACJ. Please decipher the hint and enter your result

below.
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a. Transform the sequence of letters into a number using the code table.

b. Add 20 to the number

The decrypted hint reads:

G.3 Task Instructions

Next to X another number was drawn by the computer, Y. Whether a participant has to

guess Y as well was randomly determined at the beginning of the study and has no impact

on the size of possible earnings.

[ Treatment Narrow: To you applies the following: You indicate a guess only about X

and will be paid for your guess of X as described. ]

[ Treatment Broad: To you applies the following: You guess both drawn numbers, X

and Y. One of the numbers will later be picked and you will be paid for your guess of this

number as described. ]

[ The following description varies by task ]

X was randomly drawn from the following 5 numbers between 80 and 120, where each

number was equally likely: 80, 90, 100, 110, 120.

Y was randomly drawn from the following 7 numbers between -30 and 30, were each

number was equally likely: -30, -20, -10, 0, 10, 20, 30.

X and Y were drawn independently.

[ Treatment Broad: You will guess X and Y simultaneously, that means in each entry row
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you have to pick both a number for X and a number for Y and indicate a percentage along-

side, which is your guess that these two numbers were drawn together. ]

When you click “Next”, you will first receive your additional hint on the following page.

You have 5 minutes time to decipher the hint. Then you have another 5 minutes of time

to indicate you guess. The remaining time will be displayed on the upper right corner of

the pages.

Your Additional Hint

Your additional hint for the guess of X [ X and Y ] is: FJ. The completely decrypted hint

indicates the sum of the 2 drawn numbers, i.e., X + Y.

Decryption Instructions.

a. Transform the sequence of letters into a number using the code table.

b. Add 20 to the number

[ Calculator provided. ] On the next page you will see the entry fields for your guess. You

can now enter your decrypted additional hint below, then it will be displayed again on

the next page.Your deciphered additional hint reads: ... Once you click on “Next” you

have 5 minutes time to indicate your guess.
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G.4 Decision Screens: Laboratory, Baseline Study

Figure 30: Exemplary decision screen in condition Narrow (translated from German). The number 230
indicates the average of X and Y. Subjects state their belief by indicating a full posterior distribution for
X. They have to select values for X using the dropdown menu and enter a number of percentage points in
the fields on the right. They can use arbitrary many entry lines. The current sum of percentage points is
indicated and has to equal exactly 100 before one can proceed. On the bottom of the screen, the distributions
of X and Y are indicated as a reminder.
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Figure 31: Exemplary decision screen in condition Narrow (translated from German). Use of dropdown
menu.
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Figure 32: Exemplary decision screen in condition Narrow (translated from German). Use of multiple entry
rows to indicate the full subjective distribution.
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Figure 33: Exemplary decision screen in condition Broad (translated from German). The number 230 indi-
cates the average of X and Y. Subjects state their belief by indicating a full posterior distribution for X and Y.
They have to select values using the dropdown menu and enter a number of percentage points in the fields
on the right. They can use arbitrary many entry lines. The current sum of percentage points is indicated
and has to equal exactly 100 before one can proceed. On the bottom of the screen, the distributions of X
and Y are indicated as a reminder.
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G.5 Decision Screens: Online, Baseline Study

Figure 34: Instructions screen in online experiment.
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Figure 35: Screenshot of example task in online experiment.
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G.6 Decision Screens: Online, Vignette Studies

Figure 36: Screenshot of instructions in vignette study.
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Figure 37: Screenshot of Earnings vignette, treatment Broad, outcome Belief Probabilistic.
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Figure 38: Screenshot of Earnings vignette, treatment Narrow, outcome Belief Probabilistic.
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Figure 39: Screenshot of Earnings vignette, treatment Broad, outcome Action.
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Figure 40: Screenshot of Earnings vignette, treatment Narrow, outcome Action.
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Figure 41: Screenshot of Earnings vignette, treatment Broad, outcome Belief Simple.
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Figure 42: Screenshot of Earnings vignette, treatment Narrow, outcome Belief Simple.
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Figure 43: Screenshot of Restaurant vignette, treatment Broad, outcome Belief Probabilistic.
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Figure 44: Screenshot of Restaurant vignette, treatment Narrow, outcome Belief Probabilistic.
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Figure 45: Screenshot of Restaurant vignette, treatment Broad, outcome Action.
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Figure 46: Screenshot of Restaurant vignette, treatment Narrow, outcome Action.
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Figure 47: Screenshot of Restaurant vignette, treatment Broad, outcome Belief Simple.
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Figure 48: Screenshot of Restaurant vignette, treatment Narrow, outcome Belief Simple.
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