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Abstract
This paper theoretically and empirically investigates the role of noisy cognition in perceptual judgment, focusing on the
central tendency effect: the well-known empirical regularity that perceptual judgments are biased towards the center of
the stimulus distribution. Based on a formal Bayesian framework, we generate predictions about the relationships between
subjective confidence, central tendency, and response variability. Specifically, our model clarifies that lower subjective
confidence as a measure of posterior uncertainty about a judgment should predict (i) a lower sensitivity of magnitude
estimates to objective stimuli; (ii) a higher sensitivity to the mean of the stimulus distribution; (iii) a stronger central tendency
effect at higher stimulus magnitudes; and (iv) higher response variability. To test these predictions, we collect a large-scale
experimental data set and additionally re-analyze perceptual judgment data from several previous experiments. Across data
sets, subjective confidence is strongly predictive of the central tendency effect and response variability, both correlationally
and when we exogenously manipulate the magnitude of sensory noise. Our results are consistent with (but not necessarily
uniquely explained by) Bayesian models of confidence and the central tendency.

Keywords Visual perception · Bayesian modeling

Introduction

One of the most robust empirical regularities in studies of
human perception is the central tendency (or regression)
effect: across various perceptual domains, estimates of
stimulus magnitude are consistently biased towards the
center of the magnitude distribution (Hollingworth, 1910;
Stevens & Greenbaum, 1966). One prominent explanation
for the central tendency effect is that sensory signals are
“regularized” to reduce the influence of noise. Intuitively,
when the signal-to-noise ratio is very low, then the best
guess is the center of the magnitude distribution. When
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the signal-to-noise ratio is very high, then the best guess
will ignore the magnitude distribution and only use the
signal. At intermediate levels, the best guess will be
somewhere in between the signal and the center of the
magnitude distribution. These intuitions can be formalized
in a Bayesian framework (Petzschner, Glasauer, & Stephan,
2015), where the prior expresses the effect of the magnitude
distribution, and the likelihood expresses the effect of
sensory noise. Bayes’ rule prescribes how these two sources
of information should be optimally combined.

Central to the Bayesian framework is the role of noise
in predicting the strength of the central tendency effect.
However, typically we cannot directly measure the noise
level. This empirical gap is frequently filled by ad hoc
assumptions or by fitting free parameters to the data,
rendering the Bayesian framework possibly unfalsifiable
(Marcus & Davis, 2013; Jones & Love, 2011). The same
issue vexes non-Bayesian models (e.g., Ratcliff & McKoon
2018, 2020) that implicitly or explicitly make assumptions
about sensory or cognitive noise.

One way to get around this issue is to collect other
measures that are hypothesized to capture the magnitude of
noise. Even if we cannot measure the noise level directly,
we can make predictions about the relationships between
indirect measures and magnitude estimates as a test of
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model predictions. We pursue this strategy here, using
subjective confidence and response variability as auxiliary
measures to triangulate the effects of noise on perception.
To make our predictions precise, we develop a simple
Bayesian model of magnitude estimation and derive a
number of generic predictions from it (i.e., predictions that
don’t depend strongly on the parameter values). However,
our goal is not to advocate for the Bayesian model
versus alternative models, but rather to formalize some
hypothetical regularities which (if true) would need to be
satisfied by any model of magnitude estimation.

Our model makes several key predictions, elaborated
in the next section: (i) confidence should decrease
with sensory noise; (ii) the sensitivity of magnitude
estimates to actual magnitudes should increase with
subjective confidence and decrease with sensory noise;
(iii) the central tendency effect should decrease with
confidence and increase with sensory noise; (iv) both
confidence and sensitivity should decrease with stimulus
magnitude, assuming sensory noise that grows with
stimulus magnitude; and (v) response variability should
increase with sensory noise and decrease with confidence
when prior uncertainty is high relative to sensory noise.

We test these model predictions in two ways. First,
we implement a new large-scale magnitude estimation
experiment. We elicit both magnitude estimates and
subjective confidence. A key feature of our experiment is
that we exogenously vary the objective stimulus, the mean
of the stimulus distribution, and the magnitude of sensory
noise. We collect these data because, as explained below,
existing data sets on magnitude estimation and subjective
confidence lack sufficient variation in some of the key
elements of Bayesian models. Second, moving beyond
our new experiment, we re-analyze data from several
earlier studies that measured both continuous reports of
stimulus magnitude and subjective confidence. Although
these earlier studies are limited in several ways (which
motivated our new experiment), the results from our re-
analysis provide converging evidence for our model’s main
predictions.1 Whether or not one accepts the Bayesian
framework, these findings provide constraints on any model
of confidence and central tendency in perceptual judgment.

Theoretical framework

To motivate our empirical predictions, we will first lay
out a theoretical framework based on a simple Bayesian
estimation problem, which mirrors the experimental tasks
given to subjects.

1The data and code are available at https://github.com/yyyxiang/
confidence central tendency.

Bayesian estimation

We model a task in which subjects are asked to estimate the
magnitude of a stimulus x from a noise-corrupted signal s =
x + ε, where ε ∼ N (0, σ 2

ε ) is Gaussian-distributed sensory
noise. For concreteness, consider the task of estimating
the number of objects on a screen. In this case x is the
true number of objects and s is the observer’s sensory
representation of the number.

If the subject has a Gaussian prior over the magnitude,
x ∼ N (μx, σ

2
x ), then the posterior is also Gaussian:

P(x|s) = N (x; λs + (1 − λ)μx, σ
2
x̂
), (1)

where the posterior variance is

σ 2
x̂

= (1 − λ)σ 2
x , (2)

and the sensitivity is

λ = σ 2
x

σ 2
x + σ 2

ε

, (3)

which takes values between 0 and 1. Intuitively, the
magnitude estimate will be more sensitive (higher λ) to the
signal when the sensory noise variance (σ 2

ε ) is small relative
to the prior uncertainty (σ 2

x ).
We follow most of the literature in assuming that

the prior approximates either the experienced magnitude
distribution or the instructed distribution, depending on the
paradigm. For analytical tractability, we assume a Gaussian
prior even when the experimentally controlled stimulus
distribution is non-Gaussian (e.g., uniform). In these cases,
the mean is assumed to be equal to the center of the
uniform distribution (e.g., Roach, McGraw, Whitaker, &
Heron, 2017; Acerbi, Wolpert, & Vijayakumar, 2012). Our
experimental predictions do not depend strongly on the
choice of prior variance, provided that it is a fixed function
of the magnitude distribution range.

We posit that the subjective estimate x̂ is chosen to
minimize expected loss L(x̂, x) conditional on the signal:

x̂ = arg min
x̂

E[L(x̂, x)|s]. (4)

The optimal subjective estimate under the quadratic loss
L(x̂, x) = (x − x̂)2 equals the posterior mean (see, e.g.,
Berger 1985):

x̂ = λs + (1 − λ)μx . (5)

For the Gaussian estimation problem described here, this
prediction holds true for several other loss functions. For
example, the Bayes-optimal estimator for the absolute loss
L(x̂, x) = |x − x̂| is the posterior median, and the Bayes-
optimal estimator for the relaxed 0-1 loss (Lκ(x̂, x) = 1
if |x − x̂| ≥ κ , 0 otherwise) is the posterior mode in the
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limit κ → 0. Since the mean, median, and mode for a
Gaussian distribution have the same value, our predictions
are invariant across these choices of loss function.

Subjective confidence

Magnitude estimation tasks require subjects to report a sin-
gle point estimate of the magnitude, but Bayesian models
hypothesize that subjects are representing an entire distri-
bution over magnitudes. Subjective confidence judgments
can potentially provide a probe of this distributional repre-
sentation. According to the Bayesian confidence hypothesis
(Meyniel, Sigman, & Mainen, 2015; Pouget, Drugowitsch,
& Kepecs, 2016; Sanders, Hangya, & Kepecs, 2016; Aitchi-
son, Bang, Bahrami, & Latham, 2015; Fleming & Daw,
2017; Rahnev, Koizumi, McCurdy, D’Esposito, & Lau,
2015), subjective confidence corresponds to the posterior
probability that an action is optimal (in this context, the
probability that the subjective estimate equals the objec-
tive stimulus magnitude). Note that for continuous magni-
tudes, the probability that the point estimate x̂ equals the
objective magnitude x is 0. However, we can evaluate the
posterior probability that the true magnitude falls within
an infinitesimally small region around the posterior mean
estimate. In the limit, this probability becomes the den-
sity of the normally distributed estimate, evaluated at its
mean: 1

σx̂

√
2/π

≡ c. Thus, we see that Bayesian confi-

dence (c) for the Gaussian estimation problem is inversely
proportional to the posterior standard deviation. This result
motivates the use of the standard deviation as a measure
of “cognitive uncertainty” (Enke & Graeber, 2020).2 Most
importantly, note that under a constant prior variance σ 2

x ,
Bayesian confidence c decreases in the variance of sen-
sory noise, σ 2

ε . Because our experimental design controls
the prior variance as argued above, we will in the following
interpret Bayesian confidence as an approximate measure of
sensory noise.

Predictions

Using this framework, we can now lay out a set of
theoretical predictions, which we will empirically test in
subsequent sections.

Prediction 1 Sensitivity (λ) monotonically increases with
confidence (c).

2Note that the measure of Bayesian confidence described here does not
directly map onto our experimental instructions, which simply asked
subjects to report their subjective confidence using a Likert scale.
However, this formulation has the advantage of being directly related
to earlier formulations for discrete decisions.

This prediction follows from the expression relating
sensitivity to confidence:

λ = 1 − 2

πc2σ 2
x

. (6)

Although the model quantity λ is not directly observable,
we can approximate it empirically as described in the
experimental analysis below. The next prediction concerns
the relationship between confidence and the central
tendency effect, a straightforward corollary of Prediction
1 because ∂x̂

∂μx
= 1 − λ. As discussed above, we follow

previous work in assuming that the prior is determined by
the experienced or instructed magnitude distribution, and
hence μx is the mean of the magnitude distribution.

Prediction 2 The central tendency effect ( ∂x̂
∂μx

) monotoni-
cally decreases with confidence.

Here we have defined the central tendency effect
formally as the degree to which the perceptual estimate
changes with the average stimulus magnitude.

We now state the causal analogs of these predictions
based on exogenous changes in sensory noise.

Prediction 3 An exogenous increase in sensory noise (σ 2
ε ),

which reduces subjective confidence, decreases sensitivity.

Prediction 4 An exogenous increase in sensory noise
increases the central tendency effect.

Next, we theoretically explore how the strength of the
central tendency effect depends on the stimulus magnitude.
A well-known phenomenon is that response variability
increases with stimulus magnitude according to Weber’s
law. A common interpretation is that the signal-to-noise
ratio decreases with stimulus magnitude, due either to a
non-linear transformation of magnitude (e.g., Petzschner
& Glasauer, 2011; Fechner 1860; Nieder & Miller 2003;
Stevens 1961; Roach et al. 2017) or to magnitude-dependent
scaling of sensory noise (e.g., Treisman 1964; Gibbon 1977;
Gibbon & Church 1981). For concreteness, we examine the
implications of the latter assumption:

∂σ 2
ε

∂x
> 0 ⇒ ∂c

∂x
< 0 and

∂λ

∂x
< 0 (7)

Prediction 5 As the stimulus magnitude increases, confi-
dence and sensitivity decrease. The latter effect implies a
stronger central tendency effect for larger magnitudes.

Finally, we turn to response variability. Theoretically,
variability is affected both by the effect of sensory
noise on estimates (which increases variability) and the
counteracting central tendency effect (which decreases
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variability; see Enke & Graeber 2020 ). The expression for
response variability is given by:

Var(x̂|x) = λ2σ 2
ε =

(
σ 2

x

σ 2
x + σ 2

ε

)2

σ 2
ε . (8)

The relationship between response variability and other
quantities depends on the degree of prior uncertainty relative
to sensory noise.

Prediction 6 When sensory noise is small relative to prior
uncertainty (σ 2

ε < σ 2
x ), response variability increases

in sensory noise variance and decreases in confidence.
When sensory noise is large relative to prior uncertainty
(σ 2

ε > σ 2
x ), response variability decreases in sensory noise

variance and increases in confidence.

Intuitively, when sensory noise is zero, the response
is exactly equal to the stimulus and there is no residual
variability. In the limit of large sensory noise, the response
equals the prior mean and again there is no residual
variability. Thus there is response variability only for
intermediate values of sensory noise.

Experiment

Although a considerable number of studies have imple-
mented magnitude estimation tasks while also measuring
subjective confidence, none of these studies explicitly vary
all of the variables that are of interest in light of our theoreti-
cal predictions above. Specifically, we require a study setup
that features (i) variation in stimuli; (ii) a meaningful degree
of exogenous variation in the mean of the stimulus distribu-
tion; (iii) exogenous variation in sensory noise; and (iv) a
large sample size to allow for sufficiently powered statistical
analyses of the relationship between confidence and the pre-
cise mechanics of central tendency. Earlier studies typically
had sample sizes of fewer than 50 participants (see Table 2).

Materials andmethods

Participants

We recruited 300 participants from Amazon Mechanical
Turk (MTurk). All participants gave informed consent prior
to testing. To ensure that participants fully understood
the experiment, they completed a comprehension check
immediately after the instructions. Participants who failed
the comprehension check were asked to leave the study
and were compensated ($0.5) for their time. Participants
who passed the comprehension check proceeded with the
experiment and were paid ($4.5) for their participation.
Participants also had the opportunity to earn a performance-

based bonus payment ($1) if their estimate on a randomly
chosen trial was within 2 of the stimulus magnitude. 79
out of 300 participants received the bonus payment. The
hourly rate was between $9/hour and $11/hour depending
on whether they received a bonus. The experiment was
approved by the Harvard Institutional Review Board.

Stimuli

The stimuli were arrays of black dots on a white
background. The number of dots ranged between 15 and 65.
Note that we did not control for density, so we cannot make
a strong claim about numerosity per se using these stimuli.

Each participant completed six blocks with a total of
240 arrays. For each participant, the average stimulus
magnitude within each block was randomly drawn from a
discrete uniform distribution on the integers from 30 to 50
(sampled without replacement). For each block, the within-
block distribution was a uniform distribution centered at
the average stimulus magnitude, ranging between ±15
(sampled with replacement). This procedure ensured that
our trials feature substantial variation both in actual stimuli
within-block and in average stimuli across blocks. We
conceptualize the latter as the perceptual prior and use
the variation to manipulate the central tendency. To make
the prior salient to subjects, they were informed about the
average stimulus value within a block at the beginning of
each block, before making any estimates.

The stimulus duration on each trial was either 100 ms
or 2000 ms, intermixed randomly within each block; each
of the two duration conditions appeared on half of the
trials in each block. This feature of our experiment allows
us to leverage exogenous variation in sensory noise and
confidence to test Prediction 3. This is motivated by the
common assumption that sensory evidence is accumulated
across time, such that the signal-to-noise ratio is higher
for longer durations (Inglis & Gilmore, 2013; Cheyette &
Piantadosi, 2019; 2020).

Procedure

As illustrated in Fig. 1, each trial began with the presentation
of a fixation cross at the center of the screen for 500 ms.
Then a random dot array was presented for either 100 ms
or 2000 ms. Next, participants had 10 s to type in their
numerosity estimate using the number pad on the keyboard.
Participants were then prompted to provide a confidence
rating by clicking on a discrete slider from 0-10.

Data analysis

We excluded trials on which participants did not respond.
We analyzed the data using linear mixed-effects models.
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Report Confidence

Report EstimateFixation Cross
(500 ms)

Dot Array
(100 ms or 2000 ms)

Estimate
(10 s or until response)

Confidence
(until response)

0-10

Fig. 1 Illustration of the experiment. Each trial begins with a fixation cross, followed by a dot array. Participants then report their numerosity
estimate and confidence

Model 1 regresses subjective magnitude estimates on the
true stimulus magnitude value (Stimulus) and the average
stimulus magnitude in a block (AveStim), with random
effects for the intercept, Stimulus, and AveStim grouped
by participants. In the absence of a central tendency effect,
the regression coefficient of the true stimulus should be
one, while the coefficient of average stimulus should be
zero. The central tendency effect is indicated by a stimulus
coefficient of less than one and an average stimulus
coefficient of greater than zero.

To explore the role of sensory noise and confidence
for the central tendency effect, we ran Model 2. Here,
we added as additional regressors subjective confidence,
the interaction between confidence and the stimulus, and
the interaction between confidence and average stimulus,
and added random effects for subjective confidence, the
interaction between confidence and the stimulus, and
the interaction between confidence and average stimulus
grouped by participants. As derived above, our hypothesis is
that higher confidence (as a consequence of lower sensory
noise) is associated with a higher responsiveness to the
stimulus and a lower responsiveness to the average stimulus,
meaning that the first interaction effect should be positive
and the second one negative.

In addition, Model 2 also accounts for our exogenous
variation in stimulus duration, which we conceptualize
as exogenous variation in sensory noise that translates
into confidence. We include as regressors a binary
Condition indicator (0 for the 100 ms condition, 1 for
the 2000 ms condition), the interaction between the
stimulus and Condition, and the interaction between average
stimulus magnitude and Condition, and random effects
for Condition, the interaction between the stimulus and

Condition, and the interaction between average stimulus
magnitude and Condition grouped by participants.

To see how the proportional regression to the prior
changes in stimulus magnitude, we specified Model 3. Here,
we regress an empirical estimate of λ on stimulus magnitude
with random effects for the intercept and stimulus
magnitude grouped by participants, and hypothesize a
negative coefficient.3

Turning to the analysis of response variability, in Model
4, we regressed Variability (response standard deviation4

across multiple repetitions of the same magnitude) on Con-
fidence (averaged across stimulus repetitions), with random
effects for the intercept and Confidence grouped by partic-
ipants. In Model 5, we regressed Variability on Condition,
with random effects for the intercept and Condition grouped
by participants. For better interpretability, we standardized
the Confidence coefficients.

3Note that since we assume that the noise-corrupted signal to be
unbiased, E[s|x] = x, the average estimate of a given objective
stimulus magnitude x converges to E[x̂|x] = λx+(1−λ)μx (following
Eq. 5). Under the simplifying assumption of s = x for a given
signal realization (which holds in expectation), we can empirically
approximate an analogue of λ for each individual estimate x̂:

λ̂ := x̂ − μx

x − μx

. (9)

In regression analyses, we excluded λ̂ values of +/− infinity and those
where λ̂ was undefined due to a denominator of zero. We excluded 3%
of the sample this way.
4We used standard deviation instead of variance because we found it to
be slightly better behaved. The predictions are qualitatively the same
for both standard deviation and variance.
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Results

Preliminaries

Our study rests on two prerequisites: (i) The existence of
a central tendency effect; and (ii) variation in subjective
confidence as a function of stimulus duration.

The results of Model 1 (column 1 of Table 1) confirm the
existence of a central tendency effect in our data: the coef-
ficient of the true stimulus is substantially smaller than one
[F(1, 71405) = 1372.2, p < 0.0001], and the coefficient
of the average stimulus is considerably larger than zero
[F(1, 71405) = 71.56, p < 0.0001]. To visualize the
central tendency effect, we plotted subjective estimates as
a function of stimulus magnitude. As shown in Fig. 2a, the
slopes of the estimation functions are considerably smaller
than 1, and the level of bias in the estimation functions
increases in the mean of the stimulus distribution.

Our regression analysis revealed that confidence was
higher for longer durations [t (71405) = 16.20, p <

0.0001]5, consistent with the hypothesis that lower sensory
noise registers as higher confidence (Fig. 2b).

Confidence and the central tendency effect

We begin our main analysis by testing Predictions 1 and 2.
The results of Model 2 (column 2 of Table 1) show that the
central tendency effect is strongly moderated by subjective
confidence. The positive interaction effect of confidence and
stimulus implies that, for every standard deviation of confi-
dence, the responsiveness of subjective estimates to the sti-
mulus value increases by 5 percentage points [t (71399) =
6.71, p < 0.0001]. This result confirms Prediction 1.
Similarly, the negative interaction effect of confidence
and average stimulus shows that confident subjects place
substantially lower weight on the mean of the stimulus
distribution [t (71399) = −3.18, p < 0.01], supporting
Prediction 2 that subjective estimates are pulled towards the
prior mean to a greater extent when confidence is low. These
two interaction effects correspond to the central predictions
of the model about the role of sensory noise for the central
tendency effect. Figure 2c visualizes the results by revealing
stronger central tendency effects when confidence is low,
i.e., the implied response curve is substantially flatter.

Sensory noise and the central tendency effect

To confirm our correlational findings, we leverage the exo-
genous variation in confidence that is induced by stimulus

5This result came from an additional regression, where we regressed
Confidence on Stimulus and Condition, with random effects for the
intercept, Stimulus, and Condition grouped by participants.

Table 1 Regression coefficients and standard errors for stimulus
estimates in the new data set (Models 1 and 2)

Model 1 Model 2

(Intercept) 7.435**** (0.464) 6.666**** (0.560)

Stimulus 0.637**** (0.010) 0.537**** (0.011)

AveStim 0.110**** (0.013) 0.210**** (0.017)

Confidence −1.483**** (0.370)

Stimulus:Confidence 0.049**** (0.007)

AveStim:Confidence −0.036** (0.011)

Condition 2.481**** (0.496)

Stimulus:Condition 0.178**** (0.009)

AveStim:Condition −0.176**** (0.014)

Observations 71408 71408

Condition refers to the 2000 ms stimulus duration condition

The Confidence coefficients are standardized

* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001

duration. As shown in column 2 of Table 1, longer stimulus
durations increased the effect of objective stimulus mag-
nitude [t (71399) = 20.91, p < 0.0001] and decreased
the effect of average stimulus magnitude [t (71399) =
−12.24, p < 0.0001], consistent with a weaker central ten-
dency effect when sensory noise is lower. In combination
with the strong effect of duration on confidence, these re-
sults suggest that sensory noise causally influences both
confidence and central tendency effects, confirming Predic-
tion 3 and Prediction 4. Figure 2d visualizes these patterns
by showing that the central tendency effect is considerably
more pronounced under shorter stimulus duration, i.e., the
implied response curve is flatter.

Sensory noise and the magnitude-dependent central
tendency effect

We find strong support for Prediction 5. First recall
from Fig. 2b that confidence decreases in the stimulus
magnitude, indicating larger sensory noise. Our model
therefore predicts proportionally larger compression (lower
λ) at higher magnitudes. The results of Model 3 show
that the empirical analog of λ indeed decreases in stimulus
magnitude [t (69087) = −17.17, p < 0.0001], meaning
that participants display proportionally stronger central
tendency effects at higher stimulus magnitudes. We can also
intuitively gauge this effect in Fig. 2a, where estimates are
further away from the 45-degree line at higher magnitudes.

Sensory noise and response variability

Figures 2e and f visualize the results on the relationship
between sensory noise and response variability. Note that
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Fig. 2 a Subjective estimates as a function of objective stimulus magnitude, shown separately for three within-block average stimulus ranges. b
Confidence as a function of objective stimulus magnitude, shown separately for different stimulus duration conditions. c Subjective estimates as a
function of objective stimulus magnitude, shown separately for low confidence (confidence levels 0-3) and high confidence (confidence levels 7-
10). d Subjective estimates as a function of objective stimulus magnitude, shown separately for different stimulus durations. e Response standard
deviation as a function of confidence. f Response standard deviation under short and long stimulus duration. Error bars indicate 95% confidence
intervals

Prediction 6 implies a hump-shaped relationship between
response variability and confidence: response variability
should increase at low confidence levels (sensory noise
variance high relative to prior uncertainty) but decrease at
high confidence levels (sensory noise variance relatively
low). Figure 2e strongly supports this distinctive prediction
of the Bayesian model. A plausible assumption is that
prior uncertainty usually exceeds sensory noise variance.

Correspondingly, we find that response variability decreases
across the upper half of the confidence range when sensory
noise variance is low relative to prior uncertainty (Fig. 2e),
and results from our regression Model 4 show a negative
effect of confidence [t (11979) = −6.93, p < 0.0001].
Turning to the causal manipulation, we see from Model
5 results that variability is higher under shorter stimulus
duration [t (18181) = −5.36, p < 0.0001; also see
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Table 2 Descriptive information about the included studies

Data set Reference Stimuli # of Participants

AB17 Akdoğan and Balcı (2017) Duration of Time 76

DB18 Duyan and Balcı (2018) Number of Beeps 44

DB19 Duyan and Balcı (2019) Number of Dots 18

DB20 Duyan and Balcı (2020) Length of Lines 41

RZ14 Rausch and Zehetleitner (2014) Direction of Coherent Motion 20

SP17 Samaha and Postle (2017) Orientation of Grating 40

Experiment 4 in data set AB17 was excluded because each participant was presented with a single stimulus magnitude. Experiment 3 in data set
SP17 was excluded because it did not elicit continuous report of stimulus magnitude

Fig. 2f]. Thus the data clearly support the model predictions
about the relationship between variability, sensory noise and
subjective confidence.

Discussion

Taken together, the results establish support for all six
predictions spelled out above. In particular, (i) lower
sensory noise (high confidence) is associated with a higher
sensitivity of estimates to the true stimulus; (ii) lower
sensory noise (higher confidence) is associated with a lower
sensitivity of estimates to the average stimulus; (iii) these
results hold both in correlational analyses and when we
exogenously manipulate confidence; (iv) central tendency
increases with the stimulus magnitude; and (v) response
variability decreases with confidence and increases under
shorter stimulus duration.

Re-analysis of earlier studies

While our experiment has the advantage of being specifi-
cally tailored to investigate the predictions associated with
the core elements of a Bayesian model, we sought to test
the validity of our hypothesis more generally. Owing to
the recent publication of the Confidence Database (Rahnev
et al., 2020), we were able to additionally address the rela-
tionship between confidence and the central tendency effect
by re-analyzing data from several earlier studies.

Materials andmethods

Data sets

Out of a total of 145 studies contained in the Confidence
Database (Rahnev et al., 2020), we identified six studies that
elicited continuous reports of both stimulus magnitude and
subjective confidence (Table 2). Two of these studies use
circular stimuli (motion direction and grating orientation),

and hence are not relevant for analyses of magnitude-
dependent noise. Nonetheless, these studies are still infor-
mative about the interplay between objective magnitude and
confidence in determining subjective judgments.

Data analysis

To measure the central tendency effect, we specified the
average stimulus magnitude as the cumulative mean of all
across-block stimulus magnitudes that preceded the current
trial. We excluded each participant’s first trial in regressions
involving average stimulus, because first trials do not have
preceding trials. In our analysis, we excluded estimates that
were clearly out of range and trials on which participants
did not comply with the experiment rules.6

To assess the relationship between confidence and central
tendency, we constructed linear mixed-effects models
akin to the ones used to analyze our own experiment,
except that here we do not have treatment conditions that
exogenously vary sensory noise and confidence through
stimulus duration.

Results and discussion

Subjective estimates correlate more strongly with objective
stimulus magnitude under high confidence

Consistent with the model and our own experimental results,
we document significant positive interactions between
stimulus and confidence in all data sets (Table 3): AB17
[t (15254) = 4.66, p < 0.0001], DB18 [t (14432) =
3.78, p < 0.001], DB19 [t (8563) = 3.58, p < 0.001],
DB20 [t (9651) = 6.16, p < 0.0001], RZ14 [t (8974) =
22.84, p < 0.0001], and SP17 [t (14059) = 11.57, p <

0.0001]. In other words, subjective estimates correlate

6These are trials with estimates 999 or NaN in DB18, trials with
estimates 9999 or 999 in DB19, and trials on which participants did
not respond.
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Table 3 Regression coefficients and standard errors for the re-analysis of stimulus estimates (Model 2)

Dataset AB17 DB18 DB19 DB20 RZ14 SP17

(Intercept) 0.512**** 0.363 6.367**** 93.025**** 72.216**** 123.56****

(0.116) (0.929) (1.253) (14.287) (16.608) (8.076)

Stimulus 0.849**** 0.900**** 0.631**** 0.671**** 0.352**** 0.537****

(0.017) (0.042) (0.040) (0.021) (0.031) (0.019)

AveStim 0.027 0.153 −0.103 −0.023 0.244** 0.072

(0.036) (0.078) (0.082) (0.035) (0.083) (0.094)

Confidence −0.030 −0.357 −3.527** −2.558 −49.055*** −26.668***

(0.037) (0.243) (1.237) (8.303) (14.176) (7.255)

Stimulus:Confidence 0.035**** 0.058*** 0.076*** 0.056**** 0.244**** 0.190****

(0.007) (0.015) (0.021) (0.009) (0.011) (0.016)

AveStim:Confidence −0.054*** −0.027 0.086 −0.035 0.036 0.108

(0.014) (0.022) (0.080) (0.022) (0.077) (0.085)

Observations 15260 14438 8569 9657 8980 14065

The Confidence coefficients are standardized

* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001

more strongly with the objective stimulus magnitude when
confidence is high, as predicted by Bayesian models of
perception.

In contrast to the consistent interaction between objec-
tive stimulus magnitude and confidence across studies, the
interaction between average stimulus magnitude and confi-
dence is not consistently observed across studies (Table 3).
We find a significant effect in only one of the studies [AB17,
t (15254) = −3.88, p < 0.001], which has the predicted
sign. We conjecture that this is due to insufficient variation
in the average stimulus magnitude in prior experiments. In
our new study reported above, we remedied this limitation
by exploring a wider range of average stimulus magnitudes
to be sufficiently statistically powered.

The low variation in stimulus magnitude in the earlier
studies also makes our analysis of Prediction 5 (Model 3)
difficult. We hypothesized that the magnitude of central
tendency increases in stimulus magnitude, which should
produce a negative coefficient for stimulus magnitude. The
results of Model 3 are mixed, with a negative coefficient
for only two studies, and neither of them is significant
[AB17, t (12454) = −0.77, p = 0.44; DB19, t (8564) =
−0.31, p = 0.75]. Again, this null result is to be
expected given insufficient variation in (average) stimulus
magnitude. Our new experiment deliberately remedies this
shortcoming.

Response variability decreases with confidence

Finally, we again find strong evidence for confidence-
dependent variability. Five studies show a significantly

negative coefficient: AB17 [t (150) = −2.07, p < 0.05],
DB18 [t (86) = −3.96, p < 0.001], DB19 [t (466) =
−5.62, p < 0.0001], RZ14 [t (2538) = −10.58, p <

0.0001], and SP17 [t (4169) = −4.60, p < 0.0001]. These
results are very similar to the ones observed in our own
experimental data.

General discussion

Using data from earlier studies and a new data set, we
have established a relationship between confidence and
central tendency that conforms with (but is not necessarily
unique to) the generic predictions of Bayesian models.
First, we showed that the central tendency effect is lower
on high confidence trials. Second, we showed that when
sensory noise was exogenously increased via a stimulus
duration manipulation, the central tendency effect increased
and confidence decreased, demonstrating the causal role of
sensory noise. Third, we showed a stronger central tendency
effect at higher magnitudes, which is in line with subjective
confidence decreasing in stimulus magnitude. Fourth, we
showed that across-trial variability in responses decreased
in subjective confidence and increased in sensory noise
whenever prior uncertainty is relatively large.

Our findings bridge several disparate lines of research
on confidence and central tendency effects. Some theories
assert that confidence judgments in perceptual decision
making tasks reflect the posterior probability of being
correct—the Bayesian confidence hypothesis (Meyniel
et al., 2015; Pouget et al., 2016; Sanders et al., 2016;
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Fleming & Daw, 2017; Rahnev et al., 2015). While past
experimental work on the Bayesian confidence hypothesis
has focused on discrete choice tasks (Aitchison et al., 2015),
here we analyzed continuous report tasks, which allowed
us to relate confidence judgments to the central tendency
effect. Our finding that this relationship held across
several different stimulus domains (time, visual numerosity,
auditory numerosity, line length, motion direction, and
grating orientation) lends support to the generality of our
conclusions.

While our findings are specifically consistent with
the Bayesian confidence hypothesis, they might also be
compatible with alternative models. For example, Adler
and Ma (2018) developed several models that map
probability representations of uncertainty onto confidence
in a non-Bayesian way, and presented experimental
evidence that some of these models outperformed the
Bayesian model in predicting confidence judgments. Li
and Ma (2020) developed a different non-Bayesian model,
which determined confidence based on the difference
in probability between the top two hypotheses. For our
purposes, all of these non-Bayesian models share the key
property that confidence is lower when uncertainty (due to
sensory noise) is greater.

Some authors have argued that previous data supporting
Bayesian models can be explained by simpler heuristic
models. For example, Huttenlocher, Hedges, and Vevea
(2000) tested a Bayesian model of perceptual judgment
similar to the one analyzed here, but their conclusions were
questioned by later work showing that the same patterns
of behavior could be fit by a model that simply reports
an average of recent stimulus magnitudes (Duffy & Smith,
2020). This alternative model has limited explanatory scope
for the data we discuss here, because it is silent about the
role of confidence in generating judgment and the effects of
stimulus duration. Similarly, their account does not explain
the patterns of a stronger central tendency effect at higher
stimulus magnitudes and of predictable heterogeneity in
response variability.

A second line of research bridged by our theory
is on the central tendency effect. Recent research has
shown that cognitive load (which ostensibly increases
sensory noise) strengthens the central tendency effect,
broadly consistent with Bayesian models of perception. For
example, Allred, Crawford, Duffy, and Smith (2016) found
that asking participants to memorize six-digit numbers
(high load condition) increased the central tendency effect
in the estimation of line length, compared to a low
load condition in which participants memorized two-
digit numbers. Similarly, Olkkonen, McCarthy, and Allred
(2014) found that increasing chromatic noise or the delay
between stimulus presentation and estimation increased
the central tendency effect in a color estimation task.

Relatedly, there is evidence that the central tendency effect
is stronger when sensory information is less reliable or
when the magnitude distribution is more concentrated
around the center (Ashourian & Loewenstein, 2011; Allred,
Crawford, Duffy, & Smith, 2016; Olkkonen, McCarthy,
& Allred, 2014; Huttenlocher, Hedges, & Vevea, 2000),
again consistent with Bayesian models. Our study took this
line of research one step further, showing that confidence
judgments respond to an exogenous manipulation of
sensory noise, while explaining significant additional
response variance not explained by noise alone.

Our study is limited in several ways that can be addressed
by future research. One is that we did not provide a
detailed information processing model of behavior. This
was a deliberate choice: our aim was to test generic
principles rather than the predictions of specific information
processing models, which would inevitably require a
number of ad hoc assumptions. A second limitation is that
we did not explore the effects of magnitude distribution
shape on the central tendency effect.

The elementary psychophysical regularities studied here
may have broader implications. Economists have begun to
consider the significance of noisy cognition for a range
of phenomena, including sensitivity to risk and ambiguity,
belief updating, and survey responses (Enke & Graeber,
2020; Payzan-LeNestour & Woodford, 2020; Frydman &
Jin, 2019; Woodford, 2019; Gabaix, 2019). Models of noisy
cognition may therefore hold promise in unifying empirical
evidence from disparate fields, explaining not only lower-
level perceptual processes but also higher-level cognition.
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