
Online Appendix: Not for Publication

A Replication and Reconciliation with Pre-Analysis Plan

In this section we report the methodology and corresponding analyses from earlier versions

of this paper (https://papers.ssrn.com/sol3/papers.cfm?abstractid=3170670 and

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3589906) as specified in the

pre-registration plan of our replication study (https://www.socialscienceregistry.

org/trials/3124). The key difference is that while our approach in the present version of

the paper relies on a mixed-logit methodology following a suggestion of an anonymous ref-

eree, our previous approach employed standard logit methods. All our previous results are

closely in line with those obtained using the new methodology. Here we provide a summary

of the central exercises conducted in prior versions of the manuscript. For the complete

analysis please see https://papers.ssrn.com/sol3/papers.cfm?abstractid=3170670

and https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3589906.

A.1 Stage 1: Identifying Gain-Loss Attitudes

Our previous methodology relied on the same preference statements that we introduced

in Section 4.1, but focused only on the liking preference statements. As noted in the

main text, the liking data indicate both a substantial endowment effect and potential

differences in utility across objects. We construct a simple structural model of the liking

preference statement based upon standard random utility methods (McFadden, 1974) with

the objective of capturing the source of both of these features: gain-loss attitudes and

differences in intrinsic utility for the two objects.

Consider an individual endowed with X that is asked to provide ratings statements for

both X and Y . Under the KR model, an individual evaluates their endowment, X, based

upon U(X, 0|X, 0). Given that the agent is endowed with X and is uninformed of the
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possibility of confiscation at the time of the ratings, they plausibly evaluate Y based upon

U(0, Y |X, 0). With standard logit shocks, ✏X and ✏Y , the parameters associated with these

KR utilities are easily estimated. We assume subjects will provide a higher rating for their

endowed object, X, if

U(X, 0|X, 0) + ✏X > U(0, Y |X, 0) + ✏Y + �,

where � is a discernibility parameter which accounts for the fact that the goods may be

given identical ratings (for use of such methods, see, e.g., Cantillo et al., 2010). Similarly,

subjects provide a higher rating for the alternative object, Y , if

U(0, Y |X, 0) + ✏Y > U(X, 0|X, 0) + ✏X + �,

and provide the same rating if the difference in utilities falls within the range of discerni-

bility,

|U(X, 0|X, 0) + ✏X � (U(0, Y |X, 0) + ✏Y )|  �.

Under the functional form assumptions of section 2 with ⌘ = 1, for someone endowed with

object X, we obtain familiar logit probabilities for the ranking of ratings R(X) and R(Y ),

P (R(X) > R(Y )) =
exp(U(X, 0|X, 0))

exp(U(X, 0|X, 0)) + exp(U(0, Y |X, 0) + �)
=

exp(X)

exp(X) + exp(2Y � �X + �)

P (R(Y ) > R(X)) =
exp(U(0, Y |X, 0))

exp(U(0, Y |X, 0)) + exp(U(X, 0|X, 0) + �)
=

exp(2Y � �X)

exp(X + �) + exp(2Y � �X)

P (R(X) = R(Y )) = 1� P (R(X) > R(Y ))� P (R(Y ) > R(X)),
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where the intrinsic utility values, X and Y , the discernibility parameter �, and the gain-

loss parameter, �, are the desired estimands.27 We normalize one of the good’s values to

be Y = 1, and estimate the remaining parameters via maximum likelihood.

Table A1 provides aggregate estimates of intrinsic utilities, � and �, separately for each

pair of goods in both the initial study and our replication. In each case we find aggregate

support for loss aversion, � > 1, though less pronounced in our replication study.

Table A1: Prior Analysis: Aggregate Parameter Estimates

(1) (2) (3) (4) (5) (6) (7) (8 )
Initial Study Replication Study

Est. (Std. Err.) Est. (Std. Err.) Est. (Std. Err.) Est. (Std. Err.)

Pair 1 Pair 2 Pair 1 Pair 2

Gain-Loss Attitudes:

�̂ 1.56 (0.14) 1.29 (0.12) 1.18 (0.15) 1.12 (0.13)

Utility Values:

X̂1 (Pen Set) 0.63 (0.05) 0.66 (0.06)
Ŷ1 (USB Stick) 1 - 1 -
X̂2 (Picnic Mat) 0.84 (0.05) 1.05 (0.07)
Ŷ2 (Thermos) 1 - 1 -

Discernibility:

�̂ 0.55 (0.06) 0.45 (0.05) 0.45 (0.06) 0.62 (0.07)
Notes: Maximum likelihood estimates. Robust standard errors in parentheses.

27For someone endowed with the alternative object, Y , these same probabilities are

P (R(X) > R(Y )) =
exp(U(X, 0|0, Y ))

exp(U(X, 0|0, Y )) + exp(U(0, Y |0, Y ) + �)
=

exp(2X � �Y )

exp(Y + �) + exp(2X � �Y )

P (R(Y ) > R(X)) =
exp(u(0, Y |0, Y ))

exp(U(0, Y |0, Y )) + exp(U(X, 0|0, Y ) + �)
=

exp(Y )

exp(Y ) + exp(2X � �Y + �)

P (R(X) = R(Y )) = 1� P (R(X) > R(Y ))� P (R(Y ) > R(X)).
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A.1.1 Individual Gain-Loss Attitudes

The aggregate estimates show evidence of loss aversion. To construct bounds for estimates

of individual gain-loss attitudes, we evaluate individual choices assuming average utility

and discernibility values. For example, consider an individual endowed with the pen set

in Pair 1 in the initial study. At the aggregate estimates of � and X for Pair 1, if this

individual were to state a higher rating for the pen set than for the USB stick, it would

imply 0.632 > 2� �̂ ⇤ 0.632 + 0.549 or �̂ > 3.03. Similarly, stating a higher rating for the

USB stick would imply �̂ < 1.30,28 and stating the same rating implies �̂ 2 [1.30, 3.03].

Of these three possible cases, two demonstrate evidence of loss aversion �̂ > 1, while the

other case is plausibly loss neutral as �̂ = 1 can rationalize the ratings.29 In total, there

exist twelve cases of endowments and relative liking statements.

Overall, in our initial study 217 subjects (35.7 percent) are categorized as loss-averse, 240

(39.5 percent) are categorized as potentially loss-neutral, and 150 (24.7 percent) are cate-

gorized as gain-loving. In our replication study, 124 subjects (29.7 percent) are categorized

as loss-averse, 185 (44.4 percent) are categorized as potentially loss-neutral, and 108 (25.9

percent) are categorized as gain-loving. These are the taxonomies of individual gain-loss

types used in our analysis.

A.2 Stage 2: Heterogeneous Treatment Effects

Table A2, presents linear probability models for Stage 2 behavior with dependent vari-

able Exchange (=1). Panels A and B provide separate results for our initial and replica-

tion studies. Beginning with the initial study, we find a null average treatment effect in

Column (1). In Condition B, 36.5 percent of subjects choose to exchange, demonstrat-

ing a significant endowment effect relative to the null hypothesis of 50 percent exchange,
28 To state a higher rating for the USB implies 2� �̂ ⇤ 0.632 > 0.632 + 0.549 or �̂ < 1.30.
29It may seem prima-facie surprising that providing the same rating in this case is consistent with loss

aversion. The logic is simple: given that the pen set has substantially lower intrinsic utility than the USB
stick, one must be loss-averse to rate them equally.
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F1,605 = 18.32, (p < 0.01). Probabilistic forced exchange has a null average treatment ef-

fect, increasing trading probabilities by only 0.4 percentage points on aggregate. Columns

(2) through (4) conduct the same regressions separately for subjects categorized as loss-

averse, loss-neutral, and gain-loving, based on their Stage 1 liking statements. Panel A of

Table A2 shows a dramatic heterogeneous treatment effect. Loss-averse subjects exhibit a

statistically significant endowment effect in Condition B, and grow more approximately 16

percentage points more willing to exchange in Condition F. Gain-loving subjects exhibit

no endowment effect in Condition B, and grow approximately 25 percentage points less

willing to exchange in Condition F. The heterogeneous treatment effect over gain-loving

and loss-averse subjects of roughly 40 percentage points closely follows our theoretical de-

velopment on the sign of comparative statics, and is significant at all conventional levels,

F1,363 = 15.76, (p < 0.01).

As detailed in the main text, we registered and conducted an exact replication in the

summer of 2018 with 417 subjects, again at the University of Bonn. The registration

of our pre analysis plan, including power calculations, can be found at https://www.

socialscienceregistry.org/trials/3124. The number of subjects for the replication

was guided by a requirement of 80 percent power for the 40 percentage point difference

in treatment effect between gain-loving and loss-averse subjects noted above. Ex-post our

initial study was slightly over-powered and the replication was thus conducted with around

400 subjects. Panel B of Table A2 provides the replication analysis analogous to that

presented in Panel B. The null average treatment effect, positive treatment effect for loss-

averse subjects, and negative treatment effect for gain-loving subjects are all reproduced

with accuracy. Indeed, the 40 percentage point heterogeneous treatment effect in our initial

study is echoed in a 37 percentage point difference between gain-loving and loss-averse

subjects in our replication study.

Our replication study reproduces with precision the heterogeneous treatment effect over

gain-loss types obtained in our initial study under our prior methods. Subjects classified
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Table A2: Prior Analysis: Exchange Behavior and Probabilistic Forced Exchange

(1) (2) (3) (4)

Dependent Variable: Exchange (=1)

Full Sample Loss Averse Loss Neutral Gain Loving

Panel A: Initial Study

Condition F 0.004 0.158 0.027 -0.248
(0.034) (0.067) (0.066) (0.078)

Constant (Condition B) 0.365 0.330 0.361 0.429
(0.028) (0.049) (0.053) (0.067)

R-Squared 0.000 0.025 0.001 0.072
# Observations 607 217 240 150

H0: Zero Endowment Effect in B F1,605=18.32 F1,215=12.21 F1,238=6.85 F1,148=1.15
(p < 0.01) (p < 0.01) (p < 0.01) (p = 0.29)

H0: Zero Treatment Effect (F-B) F1,605 = 0.01 F1,215 = 5.64 F1,238 = 0.17 F1,148 = 10.18
(p = 0.90) (p = 0.02) (p = 0.68) (p < 0.01)

H0: Constant (col. 2) = Constant (col. 4) F1,363 = 1.44
(p = 0.23)

H0: Condition F (col. 2) =Condition F (col. 4) F1,363 = 15.76
(p < 0.01)

Panel B: Replication Study

Condition F -0.010 0.206 -0.073 -0.160
(0.044) (0.085) (0.075) (0.094)

Constant (Condition B) 0.399 0.271 0.444 0.474
(0.030) (0.058) (0.059) (0.067)

R-Squared 0.000 0.045 0.005 0.027
# Observations 417 124 185 108

H0: Zero Endowment Effect in B F1,415=7.97 F1,122=15.40 F1,183=0.89 F1,106=0.16
(p < 0.01) (p < 0.01) (p = 0.35) (p = 0.69)

H0: Zero Treatment Effect (F-B) F1,415 = 0.05 F1,122 = 5.79 F1,183 = 0.95 F1,106 = 2.92
(p = 0.83) (p = 0.02) (p = 0.33) (p = 0.09)

H0: Constant (col. 2) = Constant (col. 4) F1,228 = 5.22
(p = 0.02)

H0: Condition F (col. 2) =Condition F (col. 4) F1,228 = 8.33
(p < 0.01)

Notes: Ordinary least square regression. Robust standard errors in parentheses. Null hypotheses tested for 1) zero
baseline endowment effect, regression (Constant = 0.5); 2) zero treatment effect (F-B); 3) Identical Condition B
behavior across loss-averse and gain-loving subjects (Constant (col. 2) = Constant (col. 4)); 4) Identical treatment
effects of forced exchange across loss-averse and gain-loving subjects (Forced Exchange (col. 2) = Forced Exchange
(col. 4)). Hypotheses 3 and 4 tested via interacted regression with observations from columns (2) and (4).
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as loss-averse respond to Condition F by increasing their willingness to exchange; subjects

classified as gain-loving respond by decreasing their willingness to exchange.

B Additional Theoretical Analysis: PE and PPE

This appendix provides additional theoretical development for heterogeneity in response

to probabilistic forced exchange under Personal Equilibrium (PE) and the PE refinement,

Preferred Personal Equilibrium, PPE. Throughout, our maintained assumptions will be

X, Y,�, ⌘ > 0. We begin with the restrictions on behavior implied by PE. To begin, we focus

on Condition B and a choice set consisting of pure strategy choices D = {(X, 0), (0, Y )}.

In this setting, there are two potential PE selections, [c, r] = [(X, 0), (X, 0)] and [c, r] =

[(0, Y ), (0, Y )]. The individual can support not exchanging, [c, r] = [(X, 0), (X, 0)], in a

PE if

U(X, 0|X, 0) � U(0, Y |X, 0),

or

X � 1 + ⌘

1 + ⌘�
Y. (2)

Note that the smallest value of X at which the individual can support not exchanging,

XB,PE = 1+⌘
1+⌘�Y , is inferior to Y if � > 1. As such, loss-averse individuals with � > 1

may be able support not exchanging X for Y even if Y would be preferred on the basis

of intrinsic utility alone. This describes the mechanism by which the KR model generates

an endowment effect in PE. Similarly, the individual can support exchanging, [c, r] =

[(0, Y ), (0, Y )], if

U(0, Y |0, Y ) � U(X, 0|0, Y ),

or

X  1 + ⌘�

1 + ⌘
Y.
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The highest value of X at which the agent can support exchanging, XB,PE = 1+⌘�
1+⌘ Y ,

increases linearly with �. For XB,PE  X  XB,PE, there will be multiple equilibria, with

the agent able to support both exchanging and not exchanging as a PE.

Note that for gain-loving individuals with � < 1 it is also possible for XB,PE < X < XB,PE,

such that no pure strategy PE selection from the assumed D exists. In this region, if D

were to include all mixtures of exchanging and not exchanging, there would be a mixed

strategy PE of not exchanging with a given probability, p. Below, we provide this analysis.

Figure A1 provides the pure strategy PE cutoffs associated with exchanging not exchanging

in Condition B.
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Figure A1: Gain-Loss Attitudes and Theoretical Pure PE Strategy Thresholds
Notes: Threshold values for pure strategy PE for agent endowed with X, assuming Y = 1 and ⌘ = 1.

Now, consider Condition F. The potential selections for someone endowed with X are D =

{0.5(X, 0)+0.5(0, Y ), (0, Y )}, with the first element reflecting attempting not to exchange

and the second reflecting exchange, as before. The individual can support attempting not

to exchange in a PE if

U(0.5(X, 0) + 0.5(0, Y )|0.5(X, 0) + 0.5(0, Y )) � U(0, Y |0.5(X, 0) + 0.5(0, Y )),
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or

X � Y. (3)

Under forced exchange, the individual can support attempting to retain X in PE only on

the basis of intrinsic utility values, regardless of the level of �.

Though probabilistic forced exchange alters the PE considerations associated with not

exchanging, it leaves unchanged the PE considerations associated with exchanging. The

individual can support exchanging in PE if

U(0, Y |0, Y ) � U(0.5(X, 0) + 0.5(0, Y )|0, Y ),

which as before is

X  1 + ⌘�

1 + ⌘
Y.

Hence, XF,PE = XB,PE.

The manipulation of probabilistic forced exchange changes the PE cutoff for not exchanging

from XB,PE = 1+⌘
1+⌘�Y to XF,PE = Y . There is no longer any possibility in PE for a loss-

averse individual to support keeping their object if Y > X. A loss-averse individual

with � > 1 and valuation XB,PE < X < XF,PE moves from a position of multiple PE

in Condition B, to having a unique PE to exchange in Condition F. Such an individual

plausibly grows more willing to exchange when moving from Condition B to Condition F.

Similarly, a gain-loving individual with � < 1 and valuation XF,PE < X < XB,PE moves

from a position of no pure strategy PE in Condition B to having a unique PE of exchange

in Condition F. Such an individual plausibly grows less willing to exchange when moving

from Condition B to Condition F. Figure A1, illustrates these changing pure strategy PE

considerations from Condition F to Condition B. The direction of these comparative statics

is identical to that of our CPE analysis in the main text.
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B.1 PE Mixed Strategy Analysis

To provide more complete analysis, particularly when there is no pure strategy PE, we now

elaborate PE and PPE formulations when the choice set D includes all available mixtures of

exchanging and not exchanging. For Condition B , we assume DB = {p 2 [0, 1] : p(X, 0)+

(1 � p)(0, Y )}, allowing all mixtures of exchange and no exchange to be chosen. A given

mixture, p, will be PE if

U(p(X, 0) + (1� p)(0, Y )|p(X, 0) + (1� p)(0, Y )) �

U(q(X, 0) + (1� q)(0, Y )|p(X, 0) + (1� p)(0, Y )) 8 q 2 [0, 1],

or

pX + (1� p)Y + p(1� p)⌘(1� �)(X + Y ) �

qX + (1� q)Y + (1� q)p⌘(Y � �X) + q(1� p)⌘(X � �Y ) 8 q 2 [0, 1].

For a given p, let q⇤(p) ⌘ {argmaxqU(q, p)} ⌘ {argmaxqU(q(X, 0)+(1�q)(0, Y )|p(X, 0)+

(1 � p)(0, Y ))}. The brackets indicate that q⇤(p) may be a set. A mixture, p 2 [0, 1], is

PE if p 2 q⇤(p).

Note that

@U(q, p)

@q
= X � Y � p⌘(Y � �X) + (1� p)⌘(X � �Y )

= (1 + ⌘)X � (1 + ⌘�)Y � p⌘(1� �)(Y +X)

is constant for a given p, as U(q, p) is linear in q. If @U(q,p)
@q > (<) 0, then it will attain

a unique maximum q⇤(p) = {1}({0}). As such, any strict mixtures, p 2 (0, 1), for which
@U(q,p)

@q 6= 0 cannot be PE. Note that this development implies that not exchanging with
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certainty, p = 1, will be PE if @U(q,1)
@q � 0, or

(1 + ⌘)X � (1 + ⌘�)Y � ⌘(1� �)(Y +X) � 0,

X � (1 + ⌘)

(1 + ⌘�)
Y,

which corresponds to the pure strategy threshold noted above, XB,PE. Similarly, exchang-

ing with certainty, p = 0, will be PE if @U(q,0)
@q  0, or

(1 + ⌘)X � (1 + ⌘�)Y  0

X  (1 + ⌘�)

(1 + ⌘)
Y,

which corresponds to the pure strategy threshold, XB,PE. For values of X such that

(1 + ⌘)

(1 + ⌘�)
Y  X  (1 + ⌘�)

(1 + ⌘)
Y,

p = 1 and p = 0 will be PE.

Strict mixtures, p 2 (0, 1), for which @U(q,p)
@q = 0, p 2 q⇤(p), as all values of q, including

q = p, attain the maximum. For each parameter constellation, X, Y , ⌘, �, if there exists

a candidate mixture

p 2 (0, 1) s.t p =
(1 + ⌘)X � (1 + ⌘�)Y

⌘(1� �)(Y +X)

such a p is PE. Note that there will be at most one strict mixture PE. This strict mixture

will be a proper probability provided (1+⌘)X�(1+⌘�)Y
⌘(1��)(Y+X) 2 (0, 1). For such a proper mixture

probability to exist for � > 1, it must be that

(1 + ⌘)

(1 + ⌘�)
Y < X <

(1 + ⌘�)

(1 + ⌘)
Y.

That is, if � > 1, both pure strategies, p = 0 and p = 1, are PE, and the required

preferences are strict, there will also be a strict mixture PE. In contrast, for such a proper
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probability mixture to exist for � < 1, it must be that

(1 + ⌘�)

(1 + ⌘)
Y < X <

(1 + ⌘)

(1 + ⌘�)
Y.

That is, if � < 1, and neither pure strategy, p = 0 or p = 1, are PE, there will be a strict

mixture PE.

Figure A2 summarizes the PE considerations in Condition B recognizing the possibility of

mixed strategy equilibria with the corresponding value of the mixture probability noted.

In contrast to the pure strategy analysis of Figure A1, for � < 1 within the bounds
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Figure A2: Gain-Loss Attitudes and Theoretical PE Strategy Thresholds
Notes: Threshold values for mixed strategy PE for agent endowed with X, assuming Y = 1 and ⌘ = 1.

(1+⌘�)
(1+⌘) Y < X <

(1+⌘)
(1+⌘�)Y , there is now a mixed strategy PE. Further, for � > 1 and

(1+⌘)
(1+⌘�)Y < X <

(1+⌘�)
(1+⌘) Y there are three equilibria when accounting for potential mixtures.

Having elaborated the PE restrictions for Condition B, we proceed to Condition F. Con-

dition F alters the choice set from DB = {p 2 [0, 1] : p(X, 0) + (1 � p)(0, Y )} to

DF = {p 2 [0, 0.5] : p(X, 0) + (1 � p)(0, Y )}. This alteration induces two potential

changes to the PE calculus. First, potential PE choices from Condition B may not be
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available in Condition F. Second, lotteries, q, that prevent a specific p from being PE may

potentially be eliminated.

In Condition F, a given mixture p 2 [0, 0.5] will be PE if

U(p(X, 0) + (1� p)(0, Y )|p(X, 0) + (1� p)(0, Y )) �

U(q(X, 0) + (1� q)(0, Y )|p(X, 0) + (1� p)(0, Y )) 8 q 2 [0, 0.5].

As before U(q, p) is linear in q, and so a boundary strategy of attempting to keep one’s

object, (p = 0.5) will be PE if

@U(q, 0.5)

@q
= (1 + ⌘)X � (1 + ⌘�)Y � 0.5⌘(1� �)(Y +X) � 0

(1 + 0.5⌘(1 + �))X � (1 + 0.5⌘(1 + �))Y

X � Y,

which corresponds to the pure strategy threshold, XF,PE. Similarly, exchanging with

certainty, p = 0, will be be PE if

@U(q, 0)

@q
= (1 + ⌘)X � (1 + ⌘�)Y  0

X  (1 + ⌘�)

(1 + ⌘)
Y,

which corresponds to the pure strategy threshold, XF,PE = XB,PE.

Again strict mixtures, p 2 (0, 0.5), for which @U(q,p)
@q = 0, p 2 q⇤(p), as all values of q,

including q = p, attain the maximum. For each parameter constellation, X, Y , ⌘, �, if

there exists a candidate mixture

p 2 (0, 0.5) s.t p =
(1 + ⌘)X � (1 + ⌘�)Y

⌘(1� �)(Y +X)
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such a p is PE. Note that there will be at most one strict mixture PE. This strict mixture

will be a proper probability and within the choice set provided (1+⌘)X�(1+⌘�)Y
⌘(1��)(Y+X) 2 (0, 0.5).

For such a proper mixture probability to exist for � > 1, it must be that

Y < X <
(1 + ⌘�)

(1 + ⌘)
Y

That is, if � > 1, both pure strategies, p = 0 and p = 0.5, are PE, and the required

preferences are strict, there will also be a strict mixture PE. In contrast, for such a proper

probability mixture to exist for � < 1, it must be that

(1 + ⌘�)

(1 + ⌘)
Y < X < Y.

That is, if � < 1, and neither pure strategy, p = 0 or p = 0.5, are PE, there will be a strict

mixture PE.

Figure A2 summarizes the PE considerations in Condition F recognizing the possibility of

mixed strategy equilibria with the corresponding value of the mixture probability noted.

Moving from Condition B to Condition F all mixed strategy PE with p 2 (0.5, 1) are

eliminated from the choice set. Individuals with � > 1 and multiple equilibria, PE =

{0, p > 0.5, 1} in Condition B have a unique PE = {p = 0} in Condition F. Such individuals

may exchange less than 100 percent of the time in Condition B and do so 100 percent of

the time in Condition F, growing more willing to exchange. In contrast, individuals with

� < 1 and a unique PE = {p > 0.5} in Condition B, have a unique PE = {p = 0.5} in

Condition F. Such individuals would attempt to retain their object less than 100 percent of

the time in Condition B and would do so 100 percent of the time in Condition F, growing

less willing to exchange. This analysis highlights exactly the intuition laid out with our

prior pure strategy analysis and that for the CPE concept. We next turn to PPE analysis

to select among multiple PE selections.
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B.1.1 Preferred Personal Equilibrium Analysis

Where there exist multiple PE selections, the KR model is equipped with an equilibrium

selection mechanism, Preferred Personal Equilibrium (PPE). PPE selects among PE values

on the basis of ex-ante utility. Having elaborated the PE values in the Figure A2, it is

straightforward to identify the selection, p, with the highest value of U(p(X, 0) + (1 �

p)(0, Y )|p(X, 0) + (1� p)(0, Y )) = pX + (1� p)Y + p(1� p)⌘(1� �)(X + Y ). In the case

of Condition B, there is a region of multiplicity for � > 1 where the set of PE = {0, p 2

(0, 1), 1)}. In this region it is clear that not exchanging, p = 1, will yield higher ex-ante

utility than exchanging ,p = 0, if

X > Y.

If X > Y , p = 1 will also yield higher ex-ante utility than any PE mixture p 2 (0, 1) as all

mixtures will both lower intrinsic utility (as X > Y ! X > pX +(1� p)Y 8p 2 (0, 1)) and

expose the individual to the overall negative sensations of gain loss embodied in the term

p(1� p)⌘(1� �)(X + Y ) < 0 for � > 1. Following this logic, in Condition B, multiplicity

is resolved via PPE by selecting either p = 1 if X > Y or p = 0 if X < Y .
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Figure A3: Gain-Loss Attitudes and Theoretical PPE Strategy Thresholds
Notes: Threshold values for PPE for agent endowed with X, assuming Y = 1 and ⌘ = 1.
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Similarly, in Condition F, there is a region of multiplicity for � > 1, Y < X <
(1+⌘�)
(1+⌘) Y

where the set of PE = {0, p 2 (0, 0.5), 0.5}. Note that for � > 1, if X <
(1+⌘�)
(1+⌘) Y , then

X <
(1+0.5⌘(��1))
(1+0.5⌘(1��))Y = (1+⌘��0.5⌘(�+1)

(1+⌘�0.5⌘(�+1)) . That is, in this region of multiplicity, X is below

the XF,CPE cutoff noted in the main text. Hence, we know that exchanging, p = 0, yields

higher ex-ante utility than attempting not to exchange, p = 0.5, in this region. It suffices

to check which of the remaining PE selections {0, p = (1+⌘)X�(1+⌘�)Y
⌘(1��)(Y+X) 2 (0, 0.5)} provide

higher utility. For this key mixture,

p =
(1 + ⌘)X � (1 + ⌘�)Y

⌘(1� �)(Y +X)

(1� p) =
⌘(1� �)(Y +X)

⌘(1� �)(Y +X)
� (1 + ⌘)X � (1 + ⌘�)Y

⌘(1� �)(Y +X)

The PPE selection will be p = 0 provided

Y > pX + (1� p)Y + p(1� p)⌘(1� �)(X + Y )

Y > X + (1� p)⌘(1� �)(X + Y )

Y > X +


⌘(1� �)(Y +X)

⌘(1� �)(Y +X)
� (1 + ⌘)X � (1 + ⌘�)Y

⌘(1� �)(Y +X)

�
⌘(1� �)(X + Y )

Y > X + [⌘(1� �)(Y +X)� (1 + ⌘)X + (1 + ⌘�)Y ]

Y � (1 + ⌘�)Y � ⌘(1� �)Y > X + ⌘(1� �)(X)� (1 + ⌘)X

�⌘Y > �⌘�X

X >
1

�
Y,

Which is satisfied as X > Y and � > 1 in this region.

Figure A3 summarizes the PPE considerations in Conditions B and F recognizing the

possibility of a mixed strategy PPE with the corresponding value of the mixture probability

noted. Also graphed in Figure A3 is the relevant CPE cutoff for � > 1 in Condition F to

reinforce both that in the region of multiplicity exchanging, p = 0, yields higher ex-ante

utility than attempting not to exchange, p = 0.5, and that the restrictions on behavior

differ meaningfully between CPE and PPE. Nonetheless, both solution concepts share the
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same directional comparative statics that individuals with � > 1 should grow more willing

to exchange moving from Condition B to Condition F, while individuals with � < 1 should

grow less-so.

C Estimation Strategy

In this appendix, we provide the likelihood formulation for our mixed-logit methodology

to estimate heterogeneity in gain-loss attitudes and utilities. There are three relative pref-

erence statements that subjects provide in Stage 1: relative wanting statements, relative

liking statements, and hypothetical choice. Let i = 1, ..., N represent the index for sub-

jects, and let {w, l, h} represent the index of the three preference statements, referring

to (w)anting, (l)iking, and (h)ypothetical choice, respectively. Let w, l 2 {�1, 0, 1} cor-

respond to providing a higher rating for the alternative object, providing equal ratings

for both objects, and providing a higher rating for the endowed object, respectively. Let

h 2 {�1, 1} correspond to hypothetically choosing the alternative object or the endowed

object, respectively.

We begin by presenting a standard logit formulation and then extend to the mixed logit

case. Let G(·) represent the CDF of the logistic distribution. For each individual there are

three potential probabilities associated with the three potential wanting ratings for those

endowed with X, Probwi,X ,

Probwi,X = G((1 + �)� 2 Y
X � �X) if wi = 1

Probwi,X = G(2 Y
X � (1 + �)� �X) if wi = �1

Probwi,X = 1�G((1 + �)� 2 Y
X � �X)�G(2 Y

X � (1 + �)� �X) if wi = 0,
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and three for those endowed with Y , Probwi,Y ,

Probwi,Y = G(2� (1 + �) YX � �X) if wi = �1

Probwi,Y = G((1 + �) YX � 2� �X) if wi = 1

Probwi,Y = 1�G(2� (1 + �) YX � �X)�G((1 + �) YX � 2� �X) if wi = 0.

Similarly, there are three potential probabilities associated with the three potential liking

ratings for those endowed with X, Probli,X ,

Probli,X = G((1 + �)� 2 Y
X � �X) if li = 1

Probli,X = G(2 Y
X � (1 + �)� �X) if li = �1

Probli,X = 1�G((1 + �)� 2 Y
X � �X)�G(2 Y

X � (1 + �)� �X) if li = 0,

and three for those endowed with Y , Probli,Y ,

Probli,Y = G(2� (1 + �) YX � �X) if li = �1

Probli,Y = G((1 + �) YX � 2� �X) if li = 1

Probli,Y = 1�G(2� (1 + �) YX � �X)�G((1 + �) YX � 2� �X) if li = 0.

Lastly, there are two potential probabilities associated with the two hypothetical choice

statements for those endowed with X Probhi,X ,

Probhi,X = G((1 + �)� 2 Y
X ) if wi = 1

Probhi,X = G(2 Y
X � (1 + �)) if wi = �1,

and two for those endowed with Y , Probhi,Y ,

Probhi,Y = G(2� (1 + �) YX ) if wi = �1

Probhi,Y = G((1 + �) YX � 2) if wi = 1.
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Let 1X indicate an individual endowed with object X. A single individual’s choice proba-

bility would thus be

Li = (Probwi,X · Probli,X · Probhi,X)
1X · (Probwi,Y · Probli,Y · Probhi,Y )

(1�1X)
,

and the grand log likelihood would be

L =
NX

i=1

log(Li)

Moving from this logit formulation to our mixed logit formulation is straightforward and

follows Train (2009). For estimating the heterogeneity of gain-loss attitudes, we assume

that the value � is drawn from a log-normal distribution with log(�) ⇠ N(µ�, �
2
�). Let

✓ ⌘ (µ�, �
2
�), represent the parameters of this distribution, and let f(�|✓) be the distribution

of � given these parameters. A single individual’s choice probabilities are thus

Li =

Z
Li(�)f(�|✓)d�

where Li(�) is the individual choice probability evaluated at a given draw of f(�|✓). We

construct these choice probabilities through simulation. Let r = 1, ..., R represent simu-

lations of � from f(�|✓) at a given set of parameters, ✓. Let �
r be the r

th simulant. We

simulate Li as

Ľi =
1

R

RX

r=1

Li(�
r),

And these simulated probabilities replace the standard choice probabilities in the grand

log likelihood to create a simulated log likelihood,

SL =
NX

i=1

log(Ľi).
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This simulated log likelihood is maximized to deliver estimates of µ� and �
2
� alongside the

homogeneous utility ratio X
Y .

When considering heterogeneous utility, the exercise is analogous. We assume that the

value X
Y is drawn from a log-normal distribution with log(XY ) ⇠ N(XY , �

2
X
Y

). Let ✓
0 ⌘

(µX
Y
, �

2
X
Y

), represent the parameters of this distribution, and let f(XY |✓
0) be the distribution

of X
Y given these parameters. A single individual’s choice probabilities are thus

Li =

Z
Li(

X

Y
)f(

X

Y
|✓0)dX

Y

where Li(
X
Y ) is the individual choice probability evaluated at a given draw of f(XY |✓

0).

We construct these choice probabilities through simulation. Let r = 1, ..., R represent

simulations of X
Y from f(XY |✓

0) at a given set of parameters, ✓0. Let X
Y

r be the r
th simulant.

We simulate Li as

Ľi =
1

R

RX

r=1

Li(
X

Y

r

),

And these simulated probabilities replace the standard choice probabilities in the grand

log likelihood to create a simulated log likelihood,

SL =
NX

i=1

log(Ľi).

This simulated log likelihood is maximized to deliver estimates of µX
Y

and �
2
X
Y

alongside

the homogeneous gain-loss parameter, �.

Operationally for implementing both of our simulated likelihood techniques we use 1000

Halton draws for each heterogeneous parameter and implement the code in Stata. The code

for our procedure estimating the distribution of gain-loss attitudes is presented below.
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Page 1 of 1

Untitled 5/1/20, 3:45 PM

1   /* Estimator with MSL Portion for Distribution of Lambda */
                                                                                       

2   capture program drop MSL_hetlambda
3   program define MSL_hetlambda
4   * specifiy the arguments for the program
5   args lnf l ratio12 ratio34 d12 d34 ln_sd
6   
7   * declare temporary variables
8   tempvar choice choicetype endowed2 endowed3 endowed4 lambda delta firstval secondval sim_f sim_avef 
9   

10   
11   quietly {
12   * initialize the data 
13   generate int `choice' = $ML_y1
14   generate int `choicetype' = $ML_y2
15   generate int `endowed2' = $ML_y3
16   generate int `endowed3' = $ML_y4
17   generate int `endowed4' = $ML_y5
18   
19   
20   * initiate simulation average likelihood
21   generate double `sim_avef' = 0
22   
23   * set seed equivalent to prior seed
24   set seed 10101
25   
26   * simulate likelihood at each draw of lambda
27   forvalues drawnum = 1/1000 {
28   
29   * draw lambda
30   generate double `lambda' = exp(`l' + (exp(`ln_sd')*invnormal(draws1_`drawnum')))
31   
32   * evaluate the utilities
33   generate double `firstval' = (1 + `lambda')
34   replace `firstval' = (1 + `lambda')*`ratio12' if `endowed2' == 1
35   replace `firstval' = (1 + `lambda') if `endowed3' == 1
36   replace `firstval' =  (1 + `lambda')*`ratio34' if `endowed4' == 1
37   
38   generate double `secondval' =  2*`ratio12'
39   replace  `secondval' =  2  if `endowed2' == 1
40   replace  `secondval' = 2*`ratio34'  if `endowed3' == 1
41   replace  `secondval' = 2  if `endowed4' == 1
42   
43   *indifference value
44   generate double `delta' = exp(`d12')
45   replace `delta' = exp(`d34')  if (`endowed3' == 1 | `endowed4' == 1)
46   
47   * construct simulated likelihood at current draw for ratings statements
48   gen `sim_f' =   invlogit(`firstval' - `secondval' - `delta') if `choice' == 1  & (`choicetype' 

== 1 | `choicetype' == 2)
49   replace `sim_f' = invlogit(`secondval' - `firstval' - `delta')  if `choice' == -1 & (

`choicetype' == 1 | `choicetype' == 2)
50   replace `sim_f' =  1- invlogit(`firstval' - `secondval' - `delta')  - invlogit(`secondval' - 

`firstval' - `delta')    if `choice' == 0 & (`choicetype' == 1 | `choicetype' == 2)
51   
52   
53   * construct simulated likelihood  for hypothetical choice
54   replace `sim_f' = invlogit(`firstval' - `secondval')   if `choice' == 1  & `choicetype' ==3
55   replace `sim_f' =  1- invlogit(`firstval' - `secondval')  if `choice' == -1  & `choicetype' ==3
56   
57   *update average simulated likelihood
58   replace `sim_avef' = `sim_avef' + (`sim_f'/1000) 
59   
60   drop `lambda'  `firstval' `secondval' `sim_f' `delta'
61   
62   }
63   
64   * Establish log simulated likelihood
65   
66   replace `lnf' = ln(`sim_avef')
67   
68       } 
69   end 
70   
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D Additional Tables

Table A3: Method of Simulated Likelihood Estimates: Sensitivity Analysis

(1) (2) (3) (4) (5) (6)

Estimate (Std. Error) Estimate (Std. Error) Estimate (Std. Error)

Heterogeneous � Heterogeneous � Heterogeneous �

Gain-Loss Attitudes:

�̂ 1.29 (0.04) 1.37 (0.08) 1.64 (0.21)
µ̂� 0.26 (0.03) 0.17 (0.07) 0.04 (0.08)
�̂
2
� 0.00 (0.00) 0.29 (0.21) 0.91 (0.39)

Pair 1 Utilities (USB Stick (X) - Pen Set (Y)) :

Ŷ
X (Initial) 0.64 (0.03) 0.62 (0.04) 0.57 (0.04)
Ŷ
X (Replication) 0.64 (0.04) 0.61 (0.04) 0.57 (0.05)

Pair 2 Utilities (Picnic Mat (X) - Thermos (Y)):
Ŷ
X (Initial) 1.10 (0.03) 1.11 (0.03) 1.13 (0.04)
Ŷ
X (Replication) 0.90 (0.04) 0.88 (0.04) 0.87 (0.05)

Discernibility:

�X 0.50 - 0.55 - 0.60 -

# Observations 3,072 3,072 3,072
Notes: Maximum likelihood estimates. Standard errors in parentheses.
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Table A4: Exchange Behavior and Probabilistic Forced Exchange, Clustered SE

Dependent Variable: Exchange (=1)

(1) (2) (3)

Condition F -0.004 -0.340 -0.004
(0.027) (0.076) (0.026)

E[�] -0.136
(0.036)

Condition F * E[�] 0.225
(0.046)

Reduced Form Measure -0.050
(0.014)

Condition F * Reduced Form 0.077
(0.018)

Constant (Condition B) 0.380 0.584 0.380
(0.020) (0.061) (0.019)

R-Squared 0.000 0.017 0.014
# Observations 1024 1024 1024
# Clusters 53 53 53

H0 : Zero Endowment Effect in B F1,52 = 34.96 F1,52 = 1.87 F1,52 = 38.26
(p < 0.01) (p = 0.18) (p < 0.01)

H0 : Zero Treatment Effect (F-B) F1,52 = .02 F1,52 = 20.07 F1,52 = 0.02
(p = 0.89) (p < 0.01) (p = 0.89)

H0 : Gain-Loss Attitudes ? Exchange in B F1,52 = 13.98 F1,52 = 13.19
(p < 0.01) (p < 0.01)

H0 : Gain-Loss Attitudes ? Treatment Effect F1,52 = 24.03 F1,52 = 19.48
(p < 0.01) (p < 0.01)

Notes: Ordinary least square regression. Standard errors clustered at session level in parentheses. Null hy-
potheses tested for 1) zero baseline endowment effect regression (Constant coefficient = 0.5); 2) zero treatment
effect (Condition F coefficient= 0); 3) no relationship between gain-loss attitudes and behavior in Condition B
behavior (E[�] or Reduced Form Measure coefficient = 0); 4) constant treatment effect over gain-loss attitudes
(Condition F * E[�] or Condition F * Reduced Form coefficient = 0). F -statistics and two-sided p-values
reported.
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Table A5: Stage 2 Behavior and Stage 1 Experience, Clustered SE

Dependent Variable: Exchange (=1)

Stage 1 Object Not Replaced Stage 1 Object Replaced
(1) (2) (3) (4)

Condition F 0.013 -0.255 -0.019 -0.418
(0.035) (0.120) (0.044) (0.124)

E[�] -0.121 -0.153
(0.053) (0.064)

Condition F * E[�] 0.176 0.272
(0.071) (0.077)

Constant (Condition B) 0.386 0.569 0.374 0.600
(0.027) (0.092) (0.032) (0.104)

R-Squared 0.000 0.011 0.000 0.024
# Observations 511 511 513 513
# Clusters 53 53 53 53

H0 : Zero Endowment Effect in B F1,52 = 17.82 F1,52 = 0.57 F1,52 = 15.78 F1,52 = 0.92
(p < 0.01) (p = 0.45) (p < 0.01) (p = 0.34)

H0 : Zero Treatment Effect (F-B) F1,52 = 0.13 F1,52 = 4.51 F1,52 = 0.18 F1,52 = 11.31
(p = 0.72) (p = 0.04) (p = 0.67) (p < 0.01)

H0 : Gain-Loss Attitudes ? Exchange in B F1,52 = 5.25 F1,52 = 5.81
(p = 0.03) (p = 0.02)

H0 : Gain-Loss Attitudes ? Treatment Effect F1,52 = 6.19 F1,52 = 12.62
(p = 0.02) (p < 0.01)

Notes: Ordinary least square regression. Standard errors clustered at session level in parentheses. Null hypotheses tested for 1)
zero baseline endowment effect regression (Constant coefficient = 0.5); 2) zero treatment effect (Condition F coefficient= 0); 3)
no relationship between gain-loss attitudes and behavior in Condition B behavior (E[�] coefficient = 0); 4) constant treatment
effect over gain-loss attitudes (Condition F * E[�] = 0). F -statistics and two-sided p-values reported.
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Table A6: Replication Consistency and Additional Controls, Clustered SE

Dependent Variable: Exchange (=1)

Initial Study Replication Study
(1) (2) (3) (4) (5)

Condition F 0.004 -0.409 -0.010 -0.239 -0.805
(0.034) (0.111) (0.044) (0.102) (0.411)

E[�] -0.159 -0.103 -0.116
(0.053) (0.053) (0.053)

Condition F * E[�] 0.266 0.161 0.174
(0.065) (0.064) (0.064)

Constant (Condition B) 0.365 0.616 0.399 0.542 0.917
(0.028) (0.093) (0.030) (0.081) (0.343)

Additional Controls No No No No Yes
Additional Interactions No No No No Yes
R-Squared 0.000 0.023 0.000 0.008 0.060
# Observations 607 607 417 417 417
# Clusters 31 31 22 22 22

H0 : Zero Endowment Effect in B F1,30 = 23.85 F1,30 = 1.53 F1,21 = 11.73 F1,21 = 0.26 F1,21 = 1.48
(p < 0.01) (p = 0.23) (p < 0.01) (p = 0.61) (p = 0.24)

H0 : Zero Treatment Effect (F-B) F1,30 = 0.01 F1,30 = 13.44 F1,21 = 0.05 F1,21 = 5.51 F1,21 = 3.84
(p = 0.90) (p < 0.01) (p = 0.82) (p = 0.03) (p = 0.06)

H0 : Gain-Loss Attitudes ? Exchange in B F1,30 = 9.09 F1,21 = 3.79 F1,21 = 4.78
(p < 0.01) (p = 0.07) (p = 0.04)

H0 : Gain-Loss Attitudes ? Treatment Effect F1,30 = 16.61 F1,21 = 6.32 F1,21 = 7.47
(p < 0.01) (p < 0.01) (p = 0.01)

Notes: Ordinary least square regression. Standard errors clustered at session level in parentheses. Null hypotheses tested for 1) zero baseline
endowment effect regression (Constant coefficient = 0.5); 2) zero treatment effect (Condition F coefficient= 0); 3) no relationship between
gain-loss attitudes and behavior in Condition B behavior (E[�] = 0); 4) constant treatment effect over gain-loss attitudes (Condition F * E[�]
= 0). The number of clusters in replication data does not permit test for effect of additional controls or interactions (all coefficients = 0), which
would require. Additional controls include: gender, age, educational status, monthly income bracket, knowledge of economics, composite Raven
matrices score, composite CRT score, and fixed effects for experimental assistant. Interactions include all controls interacted with Condition
F. F -statistics and two-sided p-values reported.
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